Correction to "HOP, SKIP, AND JUMP: THE AGONISTIC CONCEPTION OF TRUTH" by Stephen Yablo which appeared in Philosophical Perspectives, 7, Language and Logic, 1993

[Editorial note: A variety of serious errors appeared in Yablo's paper in Philosophical Perspectives, 7, Language and Logic, 1993. The errors are of several different sorts. The first are relatively straightforward typographical errors. For the most part, corrected whole lines and some entire corrected passages are shown, but lines from volume 7 will not end at the right margin in this volume for a variety of reasons. In addition, the typography is, in general, different throughout since the typesetting for this volume was not done on the same machine as volume 7. The second sort of error involves formatting. The worst of the formatting errors concerns boldface. Though we did not know it (and, worse, did not notice in the final camera-ready copy), the typesetting machine we used for volume 7 would not produce boldface symbols or Greek letters. The codes for bold are actually in the file, but without a specific font for bold symbols and bold Greek letters the printer would not produce such boldface items. We are also unable to produce such bold items with the typesetting machine used for this volume. Yet Yablo does make crucial use of boldface Greek letters. As you will see below, we have solved this problem by replacing bold Greek letters by their bolded English name, e.g., \textit{sigma}.]

Pages 373 and 374, tables 6 and 8: the letters 't' and 'f' (with their appropriate overlining) should be adjacent, e.g.,

\[
\begin{align*}
\text{tf}
\end{align*}
\]

Page 375, line 7 in section IV should read:

be true (false) of in a given fact-situation–or, what comes to the same given our

Page 375, third line from the bottom should read:

\[
\begin{align*}
\| \phi \lor \Psi\| \equiv f & \iff \| \phi \| \equiv f \text{ and } \| \Psi \| \equiv f.
\end{align*}
\]

Page 376, the second line on the righthand side of the definition of $\rho(\alpha)$ should read:

\[
\text{jump} (\rho(\alpha - 1)) \text{ if } \alpha \neq 0^2
\]
Page 381, the lefthand sides of the definitions near the top of the page should read:

\[\rho_a \]

\[\rho^a \]

Page 382, in the righthand side of the quantifier clause of the definition, in both phrases

\[\phi[\phi] \]

should read:

\[\phi[\alpha] \]

Page 382, the first line in section VII should read:

Now the above ought to sound somewhat familiar. For near the end of his

Page 385: no occurrence of ‘\(\phi \)’ should be italicized.

Page 386, the eighth line from the end of Appendix I should read:

and \(\theta \in \Gamma \).59 Tree \(\mathfrak{F} \) is a proof of \(\theta \) in \(\Sigma \) iff60

Page 387, the pertinent parts of the first and second full paragraphs should read:

Surprisingly much of the above can be repeated, \textit{mutatis mutandis}, in the context of the strong theory. Where Kripke’s smallest fixed point \(\sigma \) was obtained from the null set by repeated application of \textit{jump}, our \textbf{sigma} comes from the empty set by repeated application of \textit{skip}. Provided that the extension of each predicate \(P \) other than \(T \) is disjoint from its antiextension, \(\sigma \) is included in \textbf{sigma}: that is, \textit{every truth value assigned by Kripke’s minimal fixed point is assigned by ours}. Usually in fact \textbf{sigma} assigns more truth-values than \(\sigma \). \textellipsis More controversially, \textbf{sigma} finds the Truth Teller \(K \) to be \textit{false} rather than gappy.67 This again seems to be the right result. Since ‘I am true’ is not, in and of itself, true, any sentence calling it true must be considered false. But \(K \) is itself such a sentence, so \(K \) is false.

Just now I said that \textbf{sigma} assigns every truth value that \(\sigma \) does. This does not mean that \textbf{sigma} assigns every \textit{semantic} value that \(\sigma \) does, for not every \(\sigma \)-gap is a \textbf{sigma}-gap. Sometimes the \(\sigma \)-gap receives a truth value, true or false, in \textbf{sigma}; this is how it is with \(K \), the Truth Teller. Other times \textbf{sigma} leaves the \(\sigma \)-gap’s semantic value undecided.

Page 387, third full paragraph: each occurrence of ‘\(\chi \)’ should be ‘chi’.
Page 387, seventh line of fourth full paragraph should read:

this fixed point \textit{iota} contains attributions that the least fixed point \textit{sigma} omits. Define the

Page 387, the second line in \textbf{Appendix 3} should read:

our language \mathcal{K} will be the set \{ $\| \phi \| \approx \nu \mid \phi$ is a sentence of \mathcal{L} and ν is a truth-value\} of

Page 388 and following: all occurrences of ‘$\|$’ should be uniform throughout.

Page 388 and following (including note 75): all occurrences of ‘ν’ with any overline should be uniform throughout.

Page 388, the sixth line from the bottom should end:

inconsistent to do so”).

Page 389, the part of rule [I] before the dash should read:

[I] from \emptyset, infer $\| \phi \| \approx \nu$

Page 390, the full sentence before rule [T2] should read:

System Σ_s takes over rules [A]-[\forall] and [T1] from Σ_s, but [T2] is modified to

Page 390, (P4) on: each occurrence of ‘σ’ from here on should be ‘\textit{sigma}’.

Page 391, (P5) on: each occurrence of ‘χ’ from here on should be ‘\textit{chi}’.

Page 391, (P6) on: each occurrence of ‘ι’ from here on should be ‘\textit{iota}’.

Page 391, from rule [V] on: all occurrences of ‘Σ_s’ should be uniform.

Page 393, note 12, line 6 should start:

no further ahead.

Page 394, note 42, the first sentence should read:

Suppose that $\| \cdot \|$ is a solution.
Page 394, note 45, the second line should read:

operation he calls "almost closing off."

Page 395, note 56, the last line should read:

\[\cap_{\beta \lhd \lambda} \cup_{\beta \lhd \alpha \lhd \lambda} \Theta_{\alpha}. \]