Aboutness

Stephen Yablo
Linguistics and Philosophy
MIT
Cambridge, MA
02139
yablo@mit.edu
Contents

Preface vii

Appendix How to Read this Book xi

Introduction xiii

Chapter 1. I Wasn’t Talking About That 3
 1.1 Excuses 3
 1.2 Puritanism 5
 1.3 Partial Truth as Truth of a Part 6
 1.4 Aboutness in History 10
 1.5 Hempel’s Ravens 13
 1.6 Summing Up 15

Chapter 2. Varieties of Aboutness 17
 2.1 Existing Proposals 17
 2.2 From Parts To Partitions 19
 2.3 Mereotopicology 22
 2.4 Truth about a Subject Matter 23
 2.5 Ways of Being 26
 2.6 Wholly About 28
 2.7 Exactly About 30
 2.8 Matter and Anti-Matter 32
 2.9 Summing Up 33

Chapter 3. Inclusion in Metaphysics and Semantics 35
 3.1 Parts of Contents 35
 3.2 Parts as Such 36
 3.3 Part-Construction 37
 3.4 The Part of A about Such and Such 39
 3.4.1 When is it True? 39
 3.4.2 What is it About? 40
 3.5 Summing Up 41

Chapter 4. A Semantic Conception of Truthmaking 43
 4.1 Aristotle, Tarski, Armstrong, ... 43
 4.2 Recursive Truthmakers 44
 4.3 Reductive Truthmakers 47
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>Quantifiers, Etc</td>
<td>49</td>
</tr>
<tr>
<td>4.5</td>
<td>A New Conditional</td>
<td>52</td>
</tr>
<tr>
<td>4.6</td>
<td>Tradeoffs</td>
<td>54</td>
</tr>
<tr>
<td>4.7</td>
<td>Truthmakers in Context</td>
<td>56</td>
</tr>
<tr>
<td>4.8</td>
<td>Necessitation</td>
<td>57</td>
</tr>
<tr>
<td>4.9</td>
<td>Verticality</td>
<td>58</td>
</tr>
<tr>
<td>4.10</td>
<td>Explaining Truth</td>
<td>59</td>
</tr>
<tr>
<td>4.11</td>
<td>Summing Up</td>
<td>61</td>
</tr>
</tbody>
</table>

Chapter 5. The Truth and Something But The Truth | 63 |
5.1	Why Lie?	63
5.2	Loose Talk	64
5.3	Applied Math	65
5.4	Intentional Identity	66
5.5	Narrow Content	67
5.6	Laws and Models	69
5.7	Negative Singular Existentials	70
5.8	Pure Math	73
5.9	Summing Up	74
Appendix: Impossibility	74	

Chapter 6. Confirmation and Verisimilitude | 77 |
6.1	Surplus Content	77
6.2	Conditions on Confirmation	79
6.3	A Third Way	80
6.4	Bayes and Hypothetico-Deductivism	83
6.5	Bayes and Instance Confirmation	84
6.6	Parts and Instances	86
6.7	Verisimilitude	87
6.8	Summing up	89

Chapter 7. Knowing That and Knowing About | 91 |
7.1	Intimations of Openness	91
7.2	The Undeniability (?) of Closure	92
7.3	Immanent Closure	94
7.4	Saying More	95
7.5	Hyperintensionality	97
7.6	Waywardness	99
7.7	Knowledge Destroyed	101
7.8	Deduction	103
7.9	Knowledge Retained	104
7.10	Summing Up	105

Chapter 8. Extrapolation and Its Limits | 107 |
8.1	Einstein’s Dog	107
8.2	Leftovers	108
8.3	Recipe Ideas	110
8.4	Extrapolation of the Fourth Kind	112
8.5	The Mysterian and the Logician	114
CONTENTS

8.6 Summing up 115

Chapter 9. Going on in the Same Way
9.1 A Framework for Subtraction 117
9.2 Home and Away 118
9.3 Synthesis 120
 9.3.1 The Truth in Mysterianism 120
 9.3.2 The Truth in Optimism 120
9.4 Value Added 121
9.5 Presupposition Failure 122
9.6 Subtraction, Conjunction, Truth-tables 124
9.7 Degrees of Inextricability 125
9.8 Subtraction as a Philosophical Tool 131
9.9 Summing Up 135

Chapter 10. Pretense and Presupposition
10.1 Semantic Novelty 137
10.2 Routes to the Unexpected 140
10.3 Piggybacking on a Game 141
10.4 Pivoting on a Presupposition 145
10.5 Summing Up 146

Chapter 11. The Missing Premise
11.1 Enthymemes 147
11.2 Bad Choices 149
11.3 Bridging the Gap 150
11.4 Interpolation = Extrapolation 153
11.5 Summing Up 154

Chapter 12. What is Said
12.1 Re-Convergence 157
12.2 Troubles with Pretense 160
12.3 Moonlighting 164
12.4 Unexpected Incremental Content 166
12.5 The Plain and the Philosophical 169

Bibliography 173

Index 184

Nomenclature 187
Preface

This book is based on my 2008 Hempel Lectures. Chapters 1 - 3 and 5 "were" the first lecture; chapters 8 and 9 were the second, and Chapters 10 to 12 were the third. Chapters 6 and 7 grow out of remarks scattered throughout. Chapter 4, on truthmakers, is the newest, and may I say, the least fun.

How a few hours of spoken word turned into so many pages of text, I don’t know. Either the lectures were incomprehensibly dense, or the book overexplains things, I suppose; maybe both. For their comments and kindness on that occasion, I would like to thank Sarah McGrath, Bas van Fraassen, John Burgess, Tom Kelly, Elizabeth Harman, Dan Garber, Tori McGeer, Phillip Pettit, Paul Benacerraf, and Harry Frankfurt. Michael Smith counseled me from Australia. Conversations with Gideon Rosen on truthmaking were a huge influence. I have benefited as much from Gideon’s input as anyone’s.

The Hempel ideas were reworked (in one case, preworked) for presentation at the University of Michigan (Nelson Lectures, 2007), Barcelona University (a mini-course in Fall 2008), Stanford (Kant Lectures, 2011), and Oxford (Locke Lectures, 2012). I owe thanks, at Michigan, to Jim Joyce, Thony Gillies, Eric Swanson, Allan Gibbard, Andy Egan, Sarah Buss, Richard Thomason, and Peter Railton; at Barcelona, to Miquel Miralbés del Pino, Manuel Garcia-Carpintero, José Diez, Gemma Celestino, Dan López da Sa, Max Köbel, Pablo Rychter, Therese Marques, Genoveva Marti, Sven Rosenkranz, and Manolo Martínez; at Stanford, to Mark Crimmins, Debra Satz, Alexis Burgess, Krista Lawlor, Tamar Schapiro, Ken Taylor, Solomon Feferman, David Hills, Wes Holliday, and Johan van Benthem; and at Oxford, to Cian Dorr, Daniel Rothschild, Anandi Hattiangadi, Ofra Magidor, Scott Sturgeon, Maja Spener, John Broome, Jessica Moss, Jeremy Goodman, Jennifer Nagel, Alan Code, and Ian Rumfitt. Cian and Daniel were particularly wise and wonderful.

Kit Fine assigned the manuscript in his Spring 2013 semantics seminar at NYU, and invited me down for discussion. There were questions—more like polite advisories, in some cases—from Yu Guo, Martin Zavaleta, Vera Flocke, Martin Glazier, Erica Schumener, and Joshua Armstrong, some of which led to changes in the text, others of which should have but didn’t.

I first encountered Kit’s work in this area at the “Because II” conference on non-causal explanation (Humboldt University, 2010). His paper was “Truthmaker Semantics,” mine “A Semantic Conception of Truthmakers.” Having a topic in common with Kit is one of the better fates that can befall you as
a philosopher. I highly recommend it. Any number of points and examples trace back in some way to Kit. I tried to hold the line at six acknowledgments; it could have been dozens.

I arrived at MIT a fictionalist, or figuralist, about various matters. One makes as if to assert that A, on this view, in order to really assert that R—R being the real-world condition that authorizes he feigned assertion. The linguistics colleagues who did not succeed in avoiding me found this fanciful, and I resolved to put the project on a more linguistically respectable footing. A paper of Kai von Fintel's on (what I call) non-catastrophic presupposition failure pointed the way (von Fintel [2004]). Danny Fox agreed to serve as my linguistics buddy. If a little knowledge is a dangerous thing, you know who to blame. I benefitted as well from a stint as head of P when Irene Heim was head of L. (Ours is the department of L&P—Linguistics and Philosophy.)

I owe a large debt, on the philosophy side, to Robert Stalnaker, for the stimulus of his work and his openness to ideas of which he does not necessarily approve. Bob's influence is there on every page. I am grateful to Agustín Rayo for manifold interlocutory contributions and comments on an early draft. Richard Holton threw a number of ideas my way, like the idea of subject-matter directed attitudes: wondering about, knowing about, being deceived about, and so on. Richard and Agustín are both the interlocutor of my dreams, uniqueness presupposition notwithstanding. Brad Skow, Sally Haslanger, Vann McGee, Rae Langton, Roger White, Alex Byrne, and Caspar Hare all made comments that changed the book in some way.

In the category of colloquium and seminar exchanges, mini-conferences, and drunken misunderstandings, the thankees are Brian Hedden, Rae Langton, Dan Greco, Ekaterina Vavova, Frank Arntzenius, David Liebesman, Mark Richard, Andrew Graham, Rebecca Millsap, Eric Swanson, Ruth Chang, Andy Egan, Benjamin Schnieder, Shamik Dasgupta, Seth Yalcin, Alejandro Pérez-Carballe, Ephraim Glick, Thomas Hofweber, Elizabeth Barnes, Elliott Michaelson, Mahrad Almotahari, Bernhard Salow, Anne Beznidnouch, Susanna Rinard, Ross Cameron, Paolo Santorio, and Sarah Moss. Thanks, all.

Johan van Benthem read the whole manuscript and sent comments from China. This was unexpected and wonderful.

My thanks to two anonymous referees for Princeton University Press for detailed, excellent advice. One asked, reasonably enough, what subject-matters are “of,” on my account. I think the answer is sentences in context, as suggested originally by Kaplan. Another asked how the views expressed here relate to my earlier fictionalism/figuralism. I choose to interpret
this as a question not about myself, but figuralism and presuppositionalism as such. The answer is found in Chapter 10: figuralism wins on power, presuppositionalism wins on plausibility. Both referees thought the book was overdemanding. I wish I could have fixed that.

A different sort of debt is owed to Ken Gemes and Lloyd Humberstone, for creating the present area of study, with their work on content-parts (Gemes [1994], Gemes [1997], ?, Gemes [2007], among many others), subject matter (Humberstone [2000]), partial truth (Humberstone [2003]), and logical subtraction (? , 657-687).

This work was supported by the National Endowment for the Humanities, the Guggenheim Foundation, and the American Council of Learned Societies. My thanks to the people who made that possible. Rob Tempio and Ryan Mulligan, at Princeton University Press, were relaxed and generally terrific throughout, for which I am truly grateful.

As explained on the first page, it all ultimately goes back to Zina. I thank her for the things she doesn’t talk about, and the things she does. Schooling me about aboutness went better than teaching me how to Dougie, but thank you, Zina, for both, and the concerts and long drives and hilarious stories. My son is no longer a boy, but thank you, Isaac, for your boyish enthusiasm, and grasp of situations, and for coming home on holidays. Sally knows how I feel.
How to Read this Book

The book is demanding in places. You should definitely not take on too much at a time. I suggest the following seven day program, if you’re up for it. Alternatively one could do the first n days for any $n \geq 2$. Day 4 can be skipped without loss of continuity. Otherwise each day depends on the ones before it.

Day 1, Basics
1.1 - 1.5; 5.1; whichever of 5.2 - 5.8 you like

Day 2, Subject Matter
2.1 - 2.8

Day 3, Inclusion
3.1 - 3.4; 3.5 if you’re a detail person; 4.1; 4.8-4.10

Day 4, Epistemology
your pick: 6.1 - 6.6 for confirmation; 7.1 - 7.5 and 7.7 - 7.9 for knowledge

Day 5, Extrapolation
8.1 - 8.6; 9.1 - 9.4; 9.6 - 9.9

Day 6, Bridging Logical Gaps
11.1 - 11.4

Day 7, Real Content
10.1 - 10.4; 12.1 - 12.4

Whatever is missing from this list you should read only if possessed by some powerful urge. Chapter 4 gets into the weeds on truthmakers. The Appendix to Chapter 5 suggests a way to think about impossible worlds. Section 6.7 sets out a Popperian theory of verisimilitude, based on work of Ken Gemes. Section 7.6 relates the hyperintensionality of knowledge to that of permission and desire. Section 12.5 muses on the (un)avoidability of philosophy.

Introduction

“Aboutness” is a grand-sounding name for something absolutely familiar. Books are on topics; portraits are of people; the 1812 Overture concerns the Battle of Borodino. Aboutness is the relation that meaningful items bear to whatever it is that they are on or of or that they address or concern.

Aboutness has been studied before. Brentano made it the defining feature of the mental (Brentano [1995]). Phenomenologists attempt to pin down the aboutness-features of particular mental states (Husserl [1970]). Medieval grammarians distinguished what we are talking about from what is said about it, and linguists have returned to this theme (Hajicová et al. [1998], Beaver and Clark [2009]). Materialists sometimes claim to have grounded aboutness in natural regularities (Fodor [1987]). Historians ask what the Civil War was about. Report from Iron Mountain: On the Possibility and Desirability of Peace asks this about war in general (Lewin et al. [1996]). Attempts have even been made, by library scientists and information theorists, to operationalize aboutness (Hutchins [1978], Demolombe and Jones [1998]).

And yet the notion plays no serious role in philosophical semantics. This is surprising — sentences have aboutness properties, if anything does — so let me explain. One leading theory, the truth-conditional theory, gives the meaning of a sentence, Quisling betrayed Norway, say, by listing the scenarios in which it is true, or false. Nothing is said about the principle of selection, about why the sentence would be true, or false, in those scenarios. Subject matter is the missing link here. A sentence is true because of how matters stand where its subject matter is concerned.

According to the other leading theory, Quisling betrayed Norway expresses an amalgam of Quisling, betrayal, and Norway. One imagines that sentences are about whatever makes its way into the corresponding amalgam. This lets too much in, however. Quisling did NOT betray Norway is about Quisling and Norway, and perhaps betrayal. It is not about NOT, the logical operation of negation. Yet NOT is just as much an element of the amalgam as Quisling.

This book makes subject matter an independent factor in meaning, constrained but not determined by truth-conditions. A sentence’s meaning is to do with its truth-value in various possible scenarios, and the factors responsible for that truth-value. No new machinery is required to accommodate this. The proposition that S is made up of the scenarios where S is true. S’s reasons for, or ways of, being true are just additional propositions, cor-
responding to its ways of being true. When Frost writes, *The world will end in fire or in ice*, the truth-conditional meaning of his statement is an undifferentiated set of scenarios. Its “enhanced” meaning is the same set, subdivided into fiery-end worlds and icy-end worlds.

Now you know the plan: to make subject matter an equal partner in meaning. I have not said why this would be desirable.

The initial motivation comes from our sense of when sentences say the same thing. The truth-conditional theory does not respect the intuitive appearances here. Mathematicians know a lot of truths; metaphysicians know a lot of others. These truths are all identical if we go by truth-conditions, since they are true in the same cases: all of them. ¹ Here is a sofa does not seem to say the same as Here is the front of a currently existing sofa, and behind it is the back, but they are (or can be understood to be) truth conditionally equivalent. All crows are black cannot say quite the same as All non-black things are non-crows, for the two are confirmed by different evidence. Subject matter looks to be the distinguishing feature. One is about crows, the other not.

Aboutness is interesting its own right; that is the first reason for caring about it. The second is that it helps us to make sense of other notions interesting in their own right.

So, for instance, one hypothesis can seem to include another, or to have the other as a part. Part of what is required for all crows to be black is that this crow here should be black. It is not required that all crows or parrots are black, though this is also implied by the blackness of crows. The idea is elusive, but we rely on it all the time. What does it mean to unpack an assertion? Unpacking is teasing out the asserted proposition’s various parts. What does it mean for your position to agree with mine? We agree to the extent that our views have content in common; part of what you say is identical to part of what I say. What does it mean for a claim that is overall mistaken to get something right? You got something right if your claim was partly true, in the sense of having wholly true parts. How right you were depends on the size of those parts.

Content-inclusion is “elusive,” I said, but this might be questioned. A includes B, one might think, just if A implies B. The argument A, therefore B is in that case valid. Every third logic book explains a valid argument as one whose conclusion was already there in the premise(s). For B to be already there in A is for B to be included in A, surely.

Suppose this were right; inclusion was implication. There would be truth in every hypothesis whatsoever, however ridiculous. After all, there is no A so thoroughly false as not to imply a true B. (Snow is hot and black gets something right by this standard, namely, that snow has these properties, or else boiled tar does.) A contains B, I propose, if the argument A, therefore B, is both truth-preserving and subject-matter preserving. Snow is hot and black, therefore Snow is hot and black, or boiled tar is hot and black, though not

¹This is an aspect of the problem of logical omniscience.
truth-conditionally ampliative, does break new ground on the aboutness front.

Why assert false sentences with truth in them, rather than just the true bits? I am moved by a remark of William James’s: “a rule of thinking which would absolutely prevent me from acknowledging certain kinds of truth if those kinds of truth were really there, would be an irrational rule.” If truth-puritanism is the rule Insist on pure truths; accept no substitutes, then it threatens to be irrational, for there might be truths accessible only as parts of larger falsehoods. Dallying with the larger falsehoods might be good policy in such cases. The proper rule allows us stretch the truth, if we make clear that our interest and advocacy extends only to the part about thus and such.

A lot of philosophical problems take the form: Such and such has GOT to be true. But how CAN it be? Pegasus does not exist, we say, and this is surely correct. How can it be, though, when there is no Pegasus for it to be true of? Again, a color shift too small to notice cannot possibly make the difference between red and not red. But it sometimes must, or a slippery slope argument forces us to extend redness even to green things. The number of Martian moons is indisputably 2. How can that be, when it is disputed whether numbers even exist?

Philosophy is shot through with this sort of conundrum. Subject matter enables a new style of response. The statements seem clearly correct, because the controversial bits are, in Larry Horn’s phrase, assertorically inert. It is the rest, the part we care about and stand behind, that is clearly correct. If the number of Martian moons strikes us as undoubtedly 2, that is because we look past the numerical packaging to the part about Mars and its moons. If subliminal color differences seem like they cannot affect whether a thing is red, that is because we see through to the part about observational red. Observational red really is tolerant in this way. Our mistake, which is understandable given that red was supposed to be observational, is to think that the observational part is the whole.

One way of cutting a claim down to size is to focus on the part about thus and such. Another is to strip away one of its implications, in an operation called logical subtraction. Will Rogers was engaged in subtraction when he said (of some public figure), “It’s not what he doesn’t know that bothers me; it’s what he does know, that just isn’t true.” Rogers is bothered by what the public figure “knows” where to “know” a thing is like knowing it, except for one detail: it might be false. Lawbooks that define duress as “like necessity, except for the element of coercive pressure,” are representing duress as the result of subtracting coercion from necessity. Cookbooks that define a gratin as a quiche that is not made in a shell are explaining This is a gratin as \((Q - S) \& \neg S\).\(^2\)

Subtraction offers an alternative to the standard method of analysis, which

\(^2\)Where \(Q\) says it is a quiche, and \(S\) that it is made in a shell. The example is from Fuhrmann [1999]. See also Fuhrmann [1996].
approaches the target from below (knowledge is belief plus truth plus...). One can in principle approach “from above,” overshooting the target and then backtracking as necessary. Plantinga, for instance, defines warrant as whatever it is that knowledge adds to true belief. Intending to raise one’s arm has been explained as raising it, minus the fact that the arm goes up. A statement is lawlike, for Goodman, if it is a law, except it might not be true.

Subtraction is a powerful operation, but a perilous one. Ask yourself what drinking adds to ingesting, or scarlet adds to red. Subject matter can be helpful here. To each B corresponds the matter of whether or not B is the case. If we understand A–B as the part of A that is not about whether B, a story emerges about why red is more extricable from red-and-round than it is from scarlet. B is more or less extricable depending on how much damage is done to A, when we prescind from the issue of whether B. Not much is left of a tomato being scarlet, if we abstract away from its redness. Plenty is left of the tomato’s being round and red; there is still the fact of its shape.

Assertive content—what a sentence is heard as saying—can be at quite a distance from compositional content. One would like to know how this comes about. Perhaps, as Stalnaker has suggested, assertive content is incremental. It is what literal content adds to information that is already on the table, or information that is backgrounded. Well, what does it add? This is a job for logical subtraction. A’s incremental content is A–B, where B is the background against which A is meant to be understood. But, while we know what this means when B is implied by A, background assumptions are oftentimes independent of A. (As That guy murdered Smith is independent of Smith’s murderer is insane.) We are thus led to consider what A–B might mean in general, that is, dropping the requirement on B that it should follow from A. That A is heard to say that A–B makes for a new kind of linguistic efficiency. An overtly indexical sentence can, as we know, be made to express a variety of propositions, by shifting the context of utterance. If assertive content is incremental, then any sentence whatever can be made to do this, by varying our assumptions.

Nobody wakes up thinking, today would be a good day to cram subject matters into meanings. Flatfooted, everyday conservatism argues against it, as does semantic Occam’s Razor. If they are to be introduced, the conservative choice would be Lewisian subject matters (Lewis [1988b]): equivalence relations on, or partitions of, logical space. I have argued for going one step further, to similarity relations on, or divisions of, logical space. These allow us to deal—since similarity is intransitive, and a division’s cells can overlap—with sentences (such as Snow is white or cold) whose truth-value is overdetermined: sentences true in two ways at once.

Overdetermination is not the only challenge we face. A division’s cells are incomparable, so allowance has not been made for “nested” truthmakers: truthmakers some of which are stronger than others. There are infinitely many moments of time is true because t0, t1, t2, t3, etc. are moments of time. But the fact that t1, t2, t3, etc. are moments of time, which is weaker
but still sufficient, ought presumably to be a truthmaker as well. It seems we need to loosen up still further, and allow as a possible subject matter for A any old sets of worlds which cover between them the A-worlds—any old “cover” of the A-region, in the jargon.3

No doubt further refinements are possible. One has to stop somewhere, though, and we stop in this book at divisions, leaving covers for another day.4 Such a compromise won’t please everyone, but it makes for a cleaner and clearer picture, albeit slightly more complicated than Lewis’s picture. Details are given in “Aboutness Theory,” which may be found on my website (http://www.mit.edu/ yablo/home/Papers.html).

3I am thinking here of sets which sum to \textit{exactly} the A-worlds. Normally the sum would be expected only to include the A-worlds.

4Occasional note will be made of them in the text, and we allow ourselves the occasional sample sentence whose subject matter is likelier a cover than a division. Certain cases of part-whole require them too. Not every truthmaker for \textit{Tom is red} (\textit{Tom is crimson}, e.g.) is implied by a truthmaker for \textit{Tom is scarlet}. But, truthmakers enough to cover the region where Tom is red have this property. Thanks to Brad Skow, Cian Dorr, Johan van Benthem, and Kit Fine for discussion.
HOW TO READ THIS BOOK
Chapter One

I Wasn’t Talking About That

1.1 EXCUSES

Carl Hempel, in whose honor these lectures are given, once wrote of some other lectures, given by Rudolf Carnap at Harvard in the 1930s. Carnap is supposed to have introduced his topic as follows:

Let A be some physical body, such as a stone, or a tree, or—to borrow an example from Russell—a dog.

I wish I could explain my topic the way Carnap explained his, with an example borrowed from Russell. But I am going to be talking about subject matter, meaning, truth, reasons for truth, contents, parts of contents, extricability of one content from another—as in Wittgenstein’s famous example of subtracting My arm went up from I raised my arm—and philosophical applications of the above. These sorts of notions do not especially lend themselves to introduction by example, or to the extent they do, the examples won’t mean much, except surrounded by so much commentary as to defeat the purpose.

I will try to set the mood with some stories. They are, to begin with anyway, on the theme of semantic excuses—excuses that might be given for saying things that are or may be untrue.

“You never take me out for ice cream any more,” Zina complained recently. I observed that we had been out for ice cream the day before, on her birthday. “I know,” she said, “but I wasn’t talking about that.” This struck me at the time as not a very convincing reply.

If you advance a generalization, and there are counterexamples, it seems a lame defense to say you weren’t talking about them. Later, though, I realized matters were not so simple.

1, 262. The story is meant to illustrate Carnap’s “punctiliousness.”

2Russell does comment in one place on partial truth, in a spirit of parody. Certain philosophers, he says, having “arrived at results incompatible with the existence of error,...have then had to add a postscript explaining that what we call error is really partial truth. If we think it is Tuesday when it is really Wednesday, we are at least right in thinking that it is a day of the week. If we think America was discovered in 1066, we are at least right in thinking that something important happened in that year” (Russell [1910], 88).

3I may have been influenced by the memory of an earlier exchange. “Isaac got a bag of popcorn. That’s not fair.” “Huh? You got one, too.” “I wasn’t talking about that.” You can’t make things unequal by refusing to talk about one of them. The example in the text is not so silly.
For I was reminded of another story in which a basically similar excuse did not seem so lame.

The second story concerns a metaphysician I’ll call Sally. Her dissertation was on the same sort of topic as Carnap’s lectures: physical objects and their identity over time. This presented a problem when it came to applying for jobs, for one invariably speaks in this area about persistence through gain or loss of properties. And Sally didn’t want to take a position on the metaphysics of properties, or even on whether such things existed. She would explain at her interviews that when she spoke, for instance, of a tomato “losing the property of being green and gaining the property of being red,” this was not meant to express any sort of ontological commitment to Redness as an entity in its own right. The issue was really to do with the tomato and its changing color. One of the interviewers took issue with this approach. Properties are not real, he said. To speak of “them” as gained or lost misrepresent the facts; it is advisable at a job interview to stick to the truth.

I will leave the rest of the story to a footnote, because the aspect that matters to us is this: Sally made a statement implying the existence of properties, a statement that she knew to be false if properties didn’t exist. But she was absolutely unbothered by the possibility that properties didn’t exist. Her excuse for this insouciance was that her topic was material objects and how they persist through change—not the properties, if such there be, of those objects.

But, how is it an excuse for asserting falsehoods (or potential falsehoods) to explain that one was talking about such and such? How is misrepresenting the facts in the course of addressing a certain topic any better than misrepresenting them with topic unspecified?

An answer is suggested by my third story. The third story is due to Nelson Goodman and Joseph Ullian, in a paper called “Truth about Jones” (Ullian and Goodman [1977]). Jones is on trial for murder and Falstaff is chief witness for the defense. Jones’s attorney concedes there is a problem with Falstaff’s testimony: It is false. That would seem to make the testimony worthless, but the attorney (Lupoli, he’s called) thinks he sees a way out. The testimony was indeed about his client Jones—no getting around that. And it was false—no getting around that, either. But, Lupoli insists, the testimony was not false about Jones. The judge calls this nonsense and declares a recess, threatening Lupoli with contempt unless he can explain how the very same sentences can be (i) false, and (ii) about Jones, yet not (iii) false about Jones.

I hope you see a connection with the earlier stories. Just as Zina and Sally

Interviewer: “We on the East Coast have arguments against the existence of properties.” Sally: “This isn’t really my battle, but why don’t you tell me what the arguments are, and we can take it from there.” Interviewer: “I shouldn’t have to tell you what our East Coast arguments are. You’re applying for a job in metaphysics; you should know them.” Sally: “I see. Well, we on the West Coast have answers to your East Coast arguments. I won’t repeat them here because they will be old news to a pro like yourself.”
were not concerned if their statements were strictly speaking false, Lupoli does not care if Falstaff’s testimony was false. It is enough for Lupoli if the testimony was partly true—true in what it said about Jones. Maybe that should be Zina’s excuse, too. “You never take me to Friendly’s” may not have been true overall, but it was true about what usually happens, birthdays aside. And maybe it should be Sally’s excuse; it is enough for her if “The tomato lost one property and gained another” was true in what it said about the tomato. Maybe it is enough, in some contexts, if a statement is partly true—true in what it says about the subject matter under discussion.

1.2 PURITANISM

This idea of being partly true is apt to arouse suspicion. It is hard not to share the judge’s frustration when he threatens Lupoli with contempt. The phrase “partly true” is perfectly good English, of course. Apparently it was decent Greek too; the creation myth in the Phaedrus is described by Socrates as “partly true and tolerably credible.” When Cratylus tells Socrates it would be “nonsensical” to address him using somebody else’s name, Socrates responds, “Well, but [it] will be quite enough for me, if you will tell me whether the nonsense would be true or false, or partly true and partly false: – which is all that I want to know.” That is actually not a bad statement of one theme of these lectures: sometimes whether a statement is partly true is all that we want to know.\(^5\)

Why, then, do I say that it doesn’t come naturally to us to settle for partial truth? Consider a fourth story, this one due to the psychoanalyst Melanie Klein. (She didn’t consider it just a story, of course.) Newborns, in Klein’s view, face an enormous cognitive challenge—they have to put the things that gratify them together with the things that frustrate them into a single world. They must take it on board, as Klein put it, that the good breast and the bad breast are the very same breast. This hurdle is usually cleared at around 4 months, she thinks, at which point the infant moves from the paranoid-schizoid position to the apparently far preferable depressive position.

That, anyway, is the normal case. Occasionally, the integration challenge proves too great, and the individual never really wraps their mind around the fact that a thing can have good and bad in it. The result is the cognitive style known as “black/white thinking” or “polarized thinking.” A black/white thinker is the type of person who loves you or hates you, according to how recently you’ve disappointed them. They’re the type of person, more generally, who insists on dividing the world up into good, full stop, and bad, full stop.

This kind of attitude is familiar with kids, of course, and forgivable there.

\(^5\)Elgin [2004]
I recall my son Isaac squirming around in his seat at the movie *Shrek*, unable to relax until he knew whether Donkey (the Eddie Murphy character) was a *good* donkey or a *bad* donkey.

But imagine you are watching the news with a full-grown neighbor, and all they want to talk about is: Is this Hugo Chávez fellow a good man or a bad man? When you try to suggest it’s more complicated than that, they reject this as spineless evasion. Answer the question, they say. That is black/white thinking, and it surely deserves its reputation as pathological.

Our assessment changes, though, when the focus shifts from goodness to truth. Demanding to know whether a statement is true, full stop, or false, full stop, is considered forthright and healthy minded, not pathological in the least. It is almost as if, having lost our Kleinian paranoia about goodness, there was no energy left to outgrow the analogous attitude about truth. A second theme of these lectures is that this is nevertheless worth doing, or insofar as we’ve already done it, owning up to doing. Let us put the paranoid/schizoid position on truth behind us, and go boldly forth to the depressive position. (I admit it’s not the best rallying cry.)

1.3 PARTIAL TRUTH AS TRUTH OF A PART

There are two questions at this point: what is partial truth? and why would we be willing settle for it? The second question I want to leave until later. The quick answer is that there are areas where if it wasn’t for partial truth, we wouldn’t, or might not, have any truth at all.\(^6\) But that, as I say, I want to leave aside the time being, to focus on the other question. What is it for a hypothesis to be partly true?\(^7\) Here is the naivest possible idea about this:

1. A hypothesis is partly true iff it has parts that are wholly true.

Now we must ask what is meant by *part* of a hypothesis. The naivest possible idea about part/whole as a relation on hypotheses is

2. One hypothesis is part of another iff it is implied by the other.\(^8\)

\(A\) includes \(B\), in other words, just if it implies \(B\).

\(^6\)Adapted from “Born Under a Bad Sign” (Booker T. Jones and William Bell): “if it wasn’t for bad luck, I wouldn’t have no luck at all.”

\(^7\)I use the word “hypothesis” ambiguously for a sentence or its propositional content.

\(^8\)Consider the version of (2) that focuses on propositional contents, rather than sentences. If we think of contents the way Lewis does, as sets of possible worlds, then (2) says one hypothesis includes another iff it is a subset of the other. Lewis in effect proposes this at one point, in "Statements Partly About Observation" (Lewis [1988b]). He also notices that it doesn’t sit very well with his view that subsets are parts of the sets they sub—which leads him to define contents, for these purposes, as the set of worlds ruled out rather than in. I don’t want to dwell on these issues since (2) strikes me as pretty clearly mistaken.
HOW TO READ THIS BOOK

The naivest possible idea about partial truth is on the right track, I think; something is partly true to the extent it has (nontrivial) parts that are wholly true. But the naivest possible idea about what it takes for A to include B is questionable.

A paradigm of inclusion, I take it, is the relation that simple conjunctions bear to their conjuncts—the relation *Snow is white and expensive* bears, for example, to *Snow is white*. A paradigm of non-inclusion is the relation disjuncts bear to disjunctions; *Snow is white* does not have *Snow is white or expensive* as a part. This is not predicted by (2). Disjuncts imply their disjunctions every bit as much as conjunctions imply their conjuncts. There is more to inclusion than implication, apparently.

You might say that paradigm case intuitions are a poor basis for theory. But the intuitions here are systematic. A number of things suggest that parthood has an explanatory role to play that requires it to be more than mere implication.

Saying: Someone who says that snow is white and expensive has said, among other things, that snow is white. This is not all they’ve said, but they have said it. To describe snow as white, however, is not to say *inter alia* that it is white or expensive. Why, when there is implication in both cases? Saying-that transmits down to the parts of what is said more easily than to “mere consequences,” meaning by this consequences that are not also parts.

Agreement: If I describe snow as white and expensive, and you reply that it is white, but not expensive, then we agree on our statements’ shared content, viz. that snow is white. The content p shares with q has sometimes been defined as the strongest statement they imply in common, which is easily seen to be $p \lor q$.

But then, we would still have agreed on something if I called snow white and you called it expensive, viz. that it is one or the other. This is not how we ordinarily think of it. Statements agree to the extent they have parts in common.

9 Perhaps the true part should be meet other conditions besides non-triviality: it should be relevant to the matter at hand, and not overshadowed by wholly false parts of a similar form. I will stick with the pure notion that abstracts away from such issues.

10 Consider the case of a conjunctive sentence *Sam is at work and Susan is at the market*. Someone who assertively utters this sentence asserts the conjunctive proposition that Sam is at work and Susan is at the market. But surely such a person also asserts the proposition that Sam is at work....The reason the speaker is counted as asserting that Sam is at work is that this proposition is a trivial consequence of the conjunctive proposition the speaker asserts” (Soames [2002]). Soames probably does not mean to be suggesting that trivial consequences are always asserted. My own view is that they are typically not asserted, unless they are parts.

11 Hempel says, for instance, that a disjunction “expresses the common content” of its disjuncts (Hempel [1960], 465).
Musts: Ordering someone to eat pork chops is ordering them to eat pork. Ordering them to eat pork is not ordering them to eat pork or human flesh, though eating pork or human flesh is no less implied by eating pork than eating pork is by eating pork chops. One commands (normally) the parts of what one commands, but not its implications more generally. A similar pattern obtains with “must” and “required”: I must do the parts of what’s required of me, not random consequences.

Mights: If Smith and Jones might have pork chops for dinner, then they might have pork for dinner. That they might have pork does not similarly entail that Smith and Jones might have pork for dinner or human flesh. Epistemic possibility extends to the parts of a hypothesis, as opposed to its consequences more generally.

Priority: Conjuncts are apt strike us as prior to—the conjunctions in which they figure, while disjunctions are posterior to—consequent on—their disjuncts. p must hold before p\&q can hold, but it is not the case that p\lor q must hold before p can hold. A similar pattern obtains with generalizations. Parts are prior to their implying wholes, it seems, while other consequences—“mere consequences”—are posterior to, or logically downwind from, their impliers.

Explanation: The falsity of a conjunct p explains the falsity of p\&q. But the falsity of a disjunction p\lor q only guarantees, without explaining, the falsity of its disjunct p. Why? If S has a false part, S will be false thanks to the falsity of that part. A part’s falsity is well positioned to explain the falsity of the whole. But for a mere consequence to be false is a symptom of S’s falsity, not the reason for it.

Confirmation: A well-known model of confirmation says that theories T are confirmed by their true consequences. If this includes mere consequences, then every truth helps with the confirmation of every theory; for T entails its disjunction with that truth. Parts confirm better than mere consequences. All ravens are black is better confirmed by This raven is black than by All ravens are black, or all are white, or all are red, etc.\(^{12}\)

Knowledge: Looking at a ripe tomato tells me that it is red, but not, it seems, that the tomato does not misleadingly appear to be

\(^{12}\)This relates to the “tacking by disjunction” problem in confirmation theory. (See Hempel [1966], Grimes [1990], Gemes [1998], Moretti [2006]).
red. The calendar tells me I’ll be teaching logic next Fall, but not that I won’t die in the meantime.\footnote{Vogel [1990], Cohen [2002].} Is it a coincidence that that the elusive implications here are not included in their impliers? Apparently not; the counterexamples that have been suggested to epistemic closure principles all share this feature. Perhaps knowing a thing suffices, not for knowing its consequences generally, but only for knowing its parts.

And then, of course

Partial truth: *Snow is white and expensive* is made partly true by the fact that snow is white. *Snow is expensive* is not made partly true by the fact that snow is white or expensive. Again, *Everything ages* is partly true by virtue of the fact that *Wood ages*, whereas *Wood is edible* is not made partly true by the fact that *Something is edible*. Why these differences? True parts confer partial truth on their wholes. Other true implications lack this power.

More is involved, it seems, in B’s being part of A than B’s being implied by A; parts are special and behave differently from mere consequences. What is the missing ingredient? What is the X such that

$$\text{Parthood} = \text{implication} + X?$$

The stories we began with suggest an answer. Falstaff’s testimony is partly true because the part that concerns Jones is wholly true. Zina’s statement to the effect that I never take her for ice cream is partly true because the part about what usually happens—what happens birthdays aside—is wholly true. Sally’s statement about the tomato retaining its identity as its properties change is partly true because it is true as far as the tomato is concerned. A statement’s parts are identified in all of these cases by looking for an implication whose subject matter is part of the subject matter of the original statement.

The proposal is that for B to be part of A involves, in addition to A implying B, that B’s subject matter be part of A’s subject matter. Conversely, the reason A’s implications are sometimes not included in A is that they bring in alien subject matter, subject matter foreign to A. *Grass is green* does not include *Grass is green or radioactive* because the latter brings in the matter of radioactivity, which is absent from *Grass of green*.

Content-inclusion is implication plus subject-matter inclusion. Both of these are relations in which a semantically important property is preserved: truth, in the one case, and aboutness, in the other. So the proposal can be put like this:

3. B is part of A iff the inference from A to B is
(i) truth-preserving—A implies B
(ii) aboutness-preserving—A’s subject matter includes B’s subject matter.

For this to work, however, we will need a notion of overall sentential subject matter—of what a sentence is overall about—such that each sentence winds up with just one of them. There will have to be such a thing as the subject matter of S.\footnote{Or, S’s subject matter in a particular context of utterance.} We will return to this issue in section 2.7 and chapter 4.

1.4 ABOUTNESS IN HISTORY

Contents have parts. Identifying them will require us to broaden our focus from truth-conditions to what sentences are about, their subject matters. (A third theme of these lectures is that there are \textit{lots} of things to understand which it helps to broaden our focus from truth-conditions to subject matters.)\footnote{The first two were: whether a statement is \textit{partly} true may be all that we want to know; and, acknowledging this is difficult but worth doing; or insofar as we’ve already done it, owning up to doing.}

To speak of “broadening” our focus suggests that subject matter has been neglected in philosophy. This is true, I think (some exceptions will be noted below). How many times have you heard a philosopher reject the analysis of P as ϕ on the grounds that their truth-conditions differ; P can be true when ϕ is false, or vice versa? (Plato on justice, Gettier on knowledge, Frankfurt on freedom and responsibility,...) Broadening the focus from truth-conditions gives us another way to challenge proposed philosophical analyses. P and ϕ may be true in the same cases, but ϕ gets the subject matter wrong; P is about one thing, ϕ is about something else. How many times have you heard a philosopher argue like \textit{that}?

Subject matters have been relatively neglected, not completely neglected. One example of non-neglect is Frege’s work on informative identity statements. He initially held that “Hesperus = Phosphorus” says of the words “Hesperus” and “Phosphorus” that they refer to the same object. His reason for rejecting this early account was \textit{not} that it assigned the wrong truth-values—“Hesperus = Phosphorus” is indeed true if and only if “Hesperus” and “Phosphorus” have a shared referent—but that it gets the subject matter wrong. “Hesperus = Phosphorus” is about the planets Hesperus and Phosphorus, not our devices for picking those planets out. Frege’s new explanation in terms of sense arguably runs into a similar problem. It is certainly not trivial that the sense of Hesperus picks out the same object as that of Phosphorus. But this, it may be felt, cannot explain the informativeness of $\text{Hesperus} = \text{Phosphorus}$ unless the sentence \textit{says} of the two senses that they pick out the same object. And $\text{Hesperus} = \text{Phosphorus}$ does not say anything about senses; it’s about planets.\footnote{Perry [2011].}
Frege’s theory of existence-claims has been questioned on a similar basis. The theory treats existence as a property, not of the things we call existent, but of concepts instantiated by those things. Biden exists says of our Biden-concept that it has instances. That is certainly not how it feels! In attributing existence to a thing x, we speak of x, not some concept it falls under.\(^{17}\)

Or consider Kripke’s famous objection to counterpart theory. Humphrey is in despair, because he lost an election he could have won. Counterpart theory understands his possibly winning the election as the winner being, in some other world, a man who suitably resembles Humphrey. But, Kripke suggests, “Humphrey could care less whether someone else...would have been victorious in [another] world” (Kripke [1980], 45). This has been called an argument from concern—Humphrey doesn’t care about the someone else—but that doesn’t really get to the heart of the matter. The lack of concern stems from a prior circumstance that would be just as problematic if Humphrey did care:

if we say, Humphrey might have won the election....we are not [according to counterpart theory] talking about something that might have happened to Humphrey but to someone else, a “counterpart” (ibid, 45).

Humphrey doesn’t care about what the counterpart-theorist is offering him, because it has the wrong subject matter; the winner is someone else.\(^{18}\)

Kripke himself appears to get the subject matter wrong in places. Consider how he explains the intuition that heat might have been low mean molecular energy (Kripke [1980], 131). The problem is that we confuse that putative possibility with the possibility that low molecular energy could have felt this way to creatures with different neural wiring.\(^{19}\) But, the thought that this heat I am now feeling could have been low energy is a thought about this heat I am now feeling, not the way it feels to local observers whoever they may be. The possibility Kripke points to might explain the intuition that low molecular energy could have felt a certain way to us, if, as he imagines, it’s a contingent fact about us to have this particular neural structure. But

\(^{17}\)Quine’s adaptation of Frege is an improvement in this respect: Something bidenizes has the truth-conditions Frege wanted, but without the allusion to concepts.

\(^{18}\)This objection has been called unconvincing on the ground that it is Humphrey himself, not his counterpart, who is a possible President on the counterpart-theoretic account. But I hear the objection differently. Kripke is complaining, not that Humphrey could have won winds up not being about the guy it intuitively does concern (Humphrey), but that it winds up also being about a guy it intuitively doesn’t concern (a guy only resembling Humphrey).

\(^{19}\)It seems to me that any case which someone will think of, which he thinks at first is a case in which heat—contrary to what is actually the case—would have been something other than molecular motion, would actually be a case in which some creatures with different nerve endings from ours inhabit this planet (maybe even we, if it’s a contingent fact about us that we have this particular neural structure), and in which these creatures were sensitive to that something else, say light, in such a way that they felt the same thing that we feel when we feel heat” (ibid., 131-2.)
the intuition that this thing we are sensing could have been low molecular energy is not an intuition about us. It concerns a switcheroo out there, where the heat is, not back here where it is being observed.20

Constructive empiricists maintain that science aims, not at true theories, but empirically adequate ones. A theory is empirically adequate if its observational content is true. What is observational content? Earlier empiricists had sought to explain it as content expressible in observational vocabulary. But van Fraassen argues very convincingly that it is not a distinctive vocabulary we should be appealing to here, but a distinctively observational subject matter. A theory’s observational content is not what part of the theory, formulated in a restricted vocabulary, says about all of reality; it’s what all of the theory says about part of reality, the observable part.21 Elliott Sober points out that van Fraassen is employing here an unexplained notion:

Our total body of beliefs is empirically adequate if all its claims about observables are true....[But] van Fraassen never provides a characterisation of the aboutness relation (Sober [1985], 14).

This is no idle worry, because some very common ideas about aboutness lead to results van Fraassen would not accept. Dirt is observable. Why wouldn’t a claim about its subatomic structure be a claim about observables, then, so that getting that structure wrong makes it empirically inadequate? Subatomic structure is the paradigm, of course, of an issue that empirically adequate theories can afford to get wrong. If van Fraassen is not to deny the observability of dirt, he had better deny that S is a claim about such and such and Such and such is observable imply S is a claim about observables. This is none too easy a thing to do. The point for now is that the proper formulation of constructive empiricism turns on how we understand aboutness.

Our final example concerns epistemic modality rather than metaphysical. The standard analysis of It might be that φ has it expressing something in the neighborhood of I don’t know that not-φ. But that cannot be right. Suppose Mary asks Jen where Bob is, and receives the answer, He might be in his office. This statement Mary receives in reply is directed at the very same issue as her question: Bob and his location. It is not about the extent of Jen’s knowledge.22 There is a concern aspect here, too. Imagine that the building has caught fire and we are out on the sidewalk looking around for colleagues. Bob is nowhere to be seen. I am worried that he might be still

20 A proper Kripke-style explanation of the intuition that that (heat) could have been low molecular energy would invoke a doppelganger of heat with low molecular energy as its underlying constitution. It would appeal to the possibility of substituting low energy for high while retaining outward appearances. There is no such possibility, however (Yablo [2006a])! Which is presumably why Kripke posits a switcheroo on the observer side rather than the observed.

21 This is ignoring Van Fraassen’s conception of theories as sets of models. He himself would explain the observational part of a theory semantically, in terms of model extensions. Muller and Van Fraassen [2008] is an interesting recent discussion.

22 If it were, the following would be a much less ridiculous conversation. Mary: Where is Bob. Jen: Bob might be in his office. Mary: Will you please get over yourself?
in his office. The limited extent of my information does not worry me in the slightest; it plays a role in why I am worried, perhaps, but it is not what I am worried about.\footnote{Yalcin [2007], Yablo [2009].}

These sorts of examples notwithstanding, subject matter has often been dismissed as just a way station on the road to truth-conditions. And a somewhat arbitrary way station at that, because, as many authors have been concerned to emphasize, one can scramble what subsentential expressions refer to while leaving truth-conditions the same. This is argued, for instance, in Quine, “Ontological Relativity” (Quine [1996]), Davidson, “Reality Without Reference” (\footnote{Hempel floats a similar idea: “Perhaps the impression of the paradoxical character}}, and Putnam, “Models and Reality” (\footnote{Hempel floats a similar idea: “Perhaps the impression of the paradoxical character}). Quine seems to suggest that not much would be lost if we assigned numbers to every material object and read statements seemingly about the latter as really about the associated numbers; “I am hungry” would say of the number 18 that it is hungry*, where to be hungry* is to have your associated person be hungry.

A sentence’s truth-conditions underdetermine its subject matter; they can be arrived at via any number of reference-assignments, as long as compensating changes are made in the interpretation of predicates. This might be taken to show that subject matter is less well-grounded than truth-conditions, or even somehow less real. But the more natural conclusion is that we have in subject matter a potentially independent factor in overall meaning, one that can vary even as truth-conditions remain the same.

1.5 HEMPEL’S RAVENS

A good, anyway tempting in the present context, illustration is Hempel’s raven paradox. *All ravens are black* is true in the same circumstances as *All non-black things are non-ravens*. One would expect, then, that data confirming the one should equally confirm the other. And yet a black raven seems more confirmationally relevant to *All ravens are black* than to *All non-black things are non-ravens*, while a non-black non-raven seems (if anything) more confirmationally relevant to *All non-black things are non-ravens* than to *All ravens are black*. Fruitbats seem to bear more directly on *No fructivores are ungulates* than herbivorous cows; with *No ungulates are fructivores*, which is equivalent, it’s the other way around.

Here is what I think we are tempted to say, before the confirmation theorists get to us. *No Fs are Gs* and *No Gs are Fs* are true in the same scenarios, but they are about different things. One is about the world’s Fs and which if any are G; the other is about its Gs and which if any are F. To confirm a hypothesis about the properties of one kind of thing, one should look at examples of that kind of thing, while to confirm hypotheses about another kind of thing’s properties, one should look at examples of that other kind of thing.\footnote{Hempel floats a similar idea: “Perhaps the impression of the paradoxical character}
This is not a very sophisticated or well-developed reply. And there’s an obvious objection. How can a difference in subject matter make for a confirmational difference, when confirmation is to do with likelihood of truth, and the statements are truth-conditionally equivalent?

Goodman distinguishes two ways a generalization can be confirmed by its instances. There’s first the basic, boring kind of confirmation you get by eliminating a potential counterexample—the way my being born on a Tuesday confirms that all of us here were born on a Tuesday. Then there’s the kind of confirmation that is supposed to occur in induction, where the fact that this \(P \) before us is \(Q \) makes it likelier that other \(P \)s, not yet observed, are \(Q \). For an instance to inductively confirm a hypothesis it has to bear favorably on—increase the likelihood of—the hypothesis’s other instances, especially the untested ones.\(^\text{25}\)

Now, a generalization’s instances might well be considered parts of that generalization; let’s assume that is right and see where it gets us.\(^\text{26}\) Inductive confirmer should increase the likelihood, not only of the generalization itself (that much occurs already in content-cutting), but also its parts, especially the untested parts. Inductive confirmation so understood has nothing syntactic about it. We can ask of any kind of hypothesis, and any evidence, whether \(E \) confirms \(H \) “pervasively,” in a way that penetrates down to (bubbles up from) its parts.

An \(E \) that confirms \(H \) in the basic sense may well count against a lot of \(H \), as long as the net effect is positive. Rudy looks black may not seem like evidence for Rudy looks black but is white. It is, though, if it’s only the net effect that matters. Rudy looks black but is white is, taken in in its entirety, likelier conditional on Rudy looks black than absolutely. If the case still bothers us, that’s because we are thinking of inductive/pervasive confirmation. \(E \) does not pervasively confirm \(H \) because the latter has a part, viz. Rudy is white, that is not confirmed (in the basic sense) by Rudy looking black.

Now we are getting somewhere. If to inductively confirm a hypothesis involves probabilifying its parts, then hypotheses differing in their parts are going to differ confirmationally as well—even if, like All ravens are black and All non-black things are no ravens—they’re true in the same scenarios.\(^\text{27}\)

Parthood is defined in terms of subject matter, and inductive/pervasive

\(^\text{25}\)Ken Gemes calls the boring kind of confirmation “mere content-cutting”; see Gemes [1998] and ?.

\(^\text{26}\)See section 6.5 for discussion.

\(^\text{27}\)Instance-confirmation is mostly ignored these days, for good reason: instances are identified syntactically, and, Hempel’s early hopes notwithstanding, syntactic views of confirmation have not panned out. And yet confirmation by positive instances remains the intuitive paradigm; ravens and emeralds are wheeled out on the first day of class. This is puzzling. Why mention the instantiation relation at all, if it is syntactic and marginal to the project of confirmation theory? I suspect that we see through it to another relation—that of part to whole—that is (a) central to the project of confirmation theory, and (b) in a good sense syntax-free.)
confirmation is to do with parts. Subject matter differences make for mereological differences make for confirmational differences. This is what we find with *All ravens are black* and *All non-black things are non-ravens*: the color of ravens is a different matter than the biological type of non-black things. Rudy’s color speaks only to the first of these.

So that’s the fourth theme: subject matters are an important and potentially independent factor in meaning, over and above truth-conditional content.\(^28\) The fifth theme is that they are not as independent a factor as all that, because what a sentence is about is deeply tied up with its ways (in this world and others) of being true.\(^29\) *All ravens are black* is about ravens and how they are colored, not how writing desks are colored or whether non-black things fail to be ravens. This seems not unconnected to the fact that it is true in a world because, or by way of, or in virtue of, what that world’s ravens are like, not the properties of seals or non-black things. Which seems in turn not unconnected to the fact that its way of being true changes when we move to a world with different ravens, but not (or not necessarily) when we move to a world with different seals, or swans.

1.6 SUMMING UP

Partial truth is apt to strike us as unclean, sneaky, the last refuge of a scoundrel. But, whether a statement is partly true, or true in what it says about BLAH, may be all that we want to know. A statement \(S\) is partly true insofar as it has wholly true parts: wholly true implications whose subject matter is included in that of \(S\). An account of subject matter will thus be needed, and of the relation (“aboutness”) that sentences bear to their subject matters, if we want to understand partial truth.

Aboutness has been somewhat neglected in philosophy. But not entirely; think of Frege on identity, Kripke on counterparts, van Fraassen on empirical adequacy, Yalcin on epistemic modals, and Hempel on confirmation. Subject matter will be treated here as an independent factor in meaning, over and above truth-conditional content. Not completely independent, though, for what a sentence is about is tied up with its ways of being true and false.

\(^{28}\)The first three were: whether a statement is *partly* true may be all that we want to know; acknowledging this is difficult but worth doing, or insofar as we’ve already done it, owning up to doing; to understand content-parts we have to broaden our focus from truth-conditions to subject matter.

\(^{29}\)By a sentence’s truth-conditional content, I have in mind a Lewis-style proposition—a set of possible worlds, or, to allow for partial propositions, a (not necessarily total) function from worlds to truth-values. Propositions equipped with corresponding subject matters will be called *directed* contents, or sometimes *thoughts*. (Other terms sometimes used for directed and truth-conditional contents are *thick* and *thin*.)
Chapter Two

Varieties of Aboutness

2.1 EXISTING PROPOSALS

A few philosophers have tried to think systematically about subject matter, starting with Gilbert Ryle in his 1933 *Analysis* paper “About” (Ryle [1933]). Nelson Goodman tries to improve on Ryle in a 1961 paper of the same name (Goodman [1961]). The best and most thorough account to date is David Lewis’s in “Statements Partly About Observation” (Lewis [1988b]).

A sentence is about whatever it mentions, Ryle proposes, where to mention an item \(k \) is to contain a word or phrase \(k \) that designates it. Jones climbed Helvellyn is about Jones and Helvellyn, because it contains Jones and Helvellyn. There is a danger now of Jones climbed Helvellyn coming out with the same aboutness-properties as Jones mined Helvellyn; this leads Ryle to extend the account to cover parts of speech which are not nouns... A conversation would be ‘about’ climbing, although the noun ‘climbing’ nowhere occurred, but verbs such as ‘climbed’ and adjectives such as ‘climbable’ were common to all or most of the sentences (Ryle [1933], 11).

Goodman objects that a statement is not only about what is mentioned in it. Everyone has their secrets is in part about the author, despite not contain any expressions designating him. Maine is prosperous is about New England, though nothing in it designates New England. His first proposal is this: \(S \) is about \(k \) if \(k \) is mentioned either in \(S \) or in a statement \(R \) it suitably implies. Everyone has a secret implies The oldest person has a secret, The second oldest person has a secret, etc; and eventually we reach an implication in which I are mentioned. Maine is prosperous is about New England, because it implies Of the New England states, at least one is prosperous.

Goodman’s trick is too powerful, one might think, for Maine is prosperous implies statements mentioning whatever you like. Surely it is does not get to

1See also Carnap [2002], pp. 284-92, ?, Putnam and Ullian [1965], and Perry [1989]. Perry discusses a suggestion of Barbara Partee’s about the recovery of subject-matter from truth-conditions.

2See also Lewis [1988a]. Lewis’s account is further developed in Humberstone [2000]. Two influential papers In library science/information theory are Hutchins [1977] and Demolome and Jones [1998].

3Atlas [1988] holds that this gets things backwards: mentioning is to be explained rather in terms of aboutness.
be about Texas just by implying *Maine is prosperous or Texas is!* Remember, though, *S* must “suitably” imply a statement mentioning *k*. Suitable implication is *selective* implication; *S* should imply *R(k)* without implying that *R(x)* holds for every *x* whatsoever. Texas doesn’t come into it, for what *Maine is prosperous* implies about Texas it implies about everything. Selective implication swings too far in the other direction, however. *Everything ages* is about everything, me included. But *Yablo ages* is not selectively implied. Goodman has an idea about this, too, but we’ve probably seen enough to want to explore other options.

Actually, there is from our present perspective a more basic problem. Each sentence *S* is, in Goodman’s view, about a *lot* of things. And we need a *single* subject matter (call it *s*) to slot into our proposed definition (3) of content-part.

Could *s* be built somehow out of *S*’s Goodmanian subject matters, say, as their set, or sum? There is a difficulty about any approach that tries to build a sentence’s subject matter up out of the items mentioned in it. A sentence’s subject matter has to do with what it *says*; and what it says depends not just on the words employed, but how the words are ordered.

> When a dog bites a man, that is not news, because it happens so often. But if a man bites a dog, that is news. (John B. Bogart, editor of the *New York Sun*)

Why is *man bites dog* a better headline than *dog bites man*? It is on a more interesting topic. A more interesting topic is a different topic. And yet the same items are mentioned in both.

A sentence’s subject matter depends on what it says, because subject matter is to do with ways of being true, and the ways a sentence can be true depend on what it says. Perhaps we can turn this into a definition: the subject matter of *S* is the (smallest?) *m* such that facts about *m* determine whether the sentence is true.

But, the question of when a fact is about such and such is not much easier than the corresponding question about sentences. Is the idea that *m*’s properties determine the sentence’s truth-value? This is trivial unless the properties are somehow restricted. (Texas has the property of coexisting with prosperous Maine.) Maybe what we are after is an item whose intrinsic properties determine truth-value, as the 19th century’s intrinsic properties settle the truth-value of sentences entirely about that century.

The 19th century is for Lewis a *kind* of subject matter; it’s the kind he calls *parts-based*. *m* is parts-based, if for worlds to be alike with respect to *m* is for corresponding parts of those worlds to be intrinsically indiscernible. The 19th century is part-based because worlds are alike with respect to it if and only if the one’s 19th century is an intrinsic duplicate of the other’s 19th century. Note that the 19th century ≠ the 19th century. The first is a part of one particular world (ours), or of its history. The second is a way of *grouping* worlds according to what goes on in their respective 19th centuries.
This approach is not sufficiently general. Take the matter of how many stars there are. Astronomers have not discovered a “star-counter” part of the universe, such that worlds agree in how many stars they contain if and only if the one’s counter is an intrinsic duplicate of the other’s. Facts about how many stars there are are not stored up in particular spatio-temporal regions.

Or consider the subject matter of observables, mentioned above in connection with constructive empiricism. This is prima facie a parts-based subject matter, like the biggest star. Worlds are observationally equivalent just if their observables—whatever in them can be seen, or heard, or etc—are intrinsically just like. But again, dirt can be seen, and among dirt’s intrinsic properties are some that are highly theoretical, for instance, the property of being full of quarks. It not supposed to count against a theory’s empirical adequacy that it gets subatomic structure wrong.

Observables—what an empirically adequate theory should get right—is best regarded as a non-parts-based subject matter, like the number of stars. Worlds are alike with respect to observables if they’re observationally indistinguishable; they look and feel and sound (etc) the same. What becomes then of the idea, seemingly essential to constructive empiricism, that T need only be true to the observable part of reality, if observables does not correspond to a part of reality? Something is said about this in section 2.3.

2.2 FROM PARTS TO PARTITIONS

A parts-based subject matter, whatever else it does, induces an equivalence relation on, or partition of, “logical space.” Worlds are equivalent, or cell-mates, if corresponding parts are intrinsically alike.

A non-parts-based subject matter, however, also induces an equivalence relation on logical space: worlds are equivalent, or cell-mates, just in case they are indiscernible where that subject matter is concerned. If m is the number of stars, ≡m is the relation one world bears to another just if they have equally many stars. But then, if one wants a notion of subject matter that works for both cases, let them be not parts but partitions. The second notion subsumes the first while exceeding it in generality.

To review—one starts out thinking of subject matters as parts of the world, like the western hemisphere or Queen Victoria or the 19th century. These then give way to world-partitions, which are ways of grouping worlds. Should the grouping be on the basis of goings on in corresponding world-parts, we get a kind of subject matter that, although still thoroughly partitional, looks

4 Lewis calls it observation.

5 Lewis [1988b]. An equivalence relation ≡ is a binary R that’s reflexive (everything bears R to itself), symmetric (if x bears R to y, then y bears R to x), and transitive (if x bears R to y and y bears it to z, then x bears R to z). A partition is a decomposition of some set into mutually disjoint subsets, called cells. Equivalence relations are interdefinable with partitions as follows: x’s cell [x] is the set of ys equivalent to x; x≡y if they lie in the same cell.
back to world-parts for its identity-conditions. The distinction here, between part and part-based partition, is subtle and easy to lose track of. We have the good fortune of an Oscar Wilde story to help us remember it.

Wilde offered on some occasion to construct a pun on any subject. What about the Queen? someone suggested. “The Queen is not a subject,” he replied. Our theory supports Wilde on this point. Consider Albert, Prince Consort. He lived in the 19th century. The 19th century is a thing in, or part of, the world. Living in the 19th century is not the same as living in an equivalence relation. The subject matter that groups worlds on the basis of how well their 19th centuries match up is the 19th century. Albert was married to the Queen. The Queen is a thing in, or part of, of the world. The Queen is a relation or partition; it groups worlds on the basis of their Queen-parts. Albert was married to a person, not a subject matter. The Queen is not a subject (matter). That would be the Queen.

A subject matter—I’ll sometimes say topic, or matter, or issue—is a system of differences, a pattern of cross-world variation. Where the identity of a set is given by its members, the identity of a subject matter is given by how things are liable to change where it is concerned:

4 \(m_1 = m_2 \) iff worlds differing where the first is concerned differ also with respect to the second, and vice versa.

This might seem too abstract and structural. To know what \(m_1 \) is as opposed to \(m_2 \) doesn’t seem to tell us what goes into a world’s \(m_1 \)-condition, as opposed to its \(m_2 \)-condition? To make this a bit more precise, shouldn’t we know, to grasp a subject matter \(m \), the proposition \(m(w) \) that specifies how matters stand in \(w \) where \(m \) is concerned?

But, subject matters as just explained do tell us what \(w \) is like where \(m \) is concerned. The proposition we’re looking for is meant to be true in all and only worlds in the same \(m \)-condition as \(w \); on an intensional view of propositions, it is the set of worlds in the same \(m \)-condition as \(w \). That proposition is already in our possession. To be in the same \(m \)-condition as \(w \) is to be \(m \)-equivalent to \(w \), and the set of worlds \(m \)-equivalent to \(w \) is just \(w \)’s cell in the partition. A worlds \(m \)-cell is thus the proposition saying how matters stand in it \(m \)-wise.

Lewis writes nos for the number of stars. How do we find the proposition specifying how matters stand in a world where nos is concerned? Well, \(w \) has a certain number of stars, let’s say a billion. Its nos-cell is the set of worlds with exactly as many stars as \(w \). The worlds with exactly as many stars as \(w \) are thus the ones with a billion stars. The worlds with a billion stars comprise the proposition that there are a billion stars. That it contains one billion stars sums up \(w \)’s nos-condition quite nicely. By transitivity of identity, its nos-cell sums up its nos-condition quite nicely.

6Linguists have their own notion of topic; a sentence’s topic/focus structure is something like its subject/predicate structure. Topics in the linguist’s sense may or may not be reflected in a sentence’s subject matter. (Note, sentential subject matter as we’ll be thinking of it is still a ways off; we make a start on it in section 2.6.)
WHERE ARE WE? The subject matters in (4) seemed too abstract and structural to tell us what is going on \(m \)-wise in a given world. But each \(m \) determines a function \(m(\ldots) \) that encodes precisely that information. It works backwards, too; one can recover the equivalence relation from the function, by counting worlds \(m \)-equivalent if they are mapped to the same proposition.\(^7\) \(m \) can thus be conceived as (i) an equivalence relation—that’s what it is “officially”—or (ii) a partition, or (iii) a specification for each world of what is going on there \(m \)-wise. The number of stars, for instance, can be construed as a function taking each \(k \)-star world \(w \) to the proposition \textbf{There are exactly \(k \) stars.}

The problem may seem to recur at a deeper level. How are we to get an intuitive handle on the function \(m(\ldots) \) taking worlds to their \(m \)-conditions? It’s one thing if \(m(\ldots) \) is introduced in the first place as specifying how many stars a world contains. But all we know of specification functions considered in themselves is that they are mathematical objects (sets, or partial sets, presumably) built in such and such ways out of worlds. It is not clear how we are to think about sets like this, other than by laying out the membership tree and describing the worlds at terminal nodes as best we can.

Each specification function \(m(\ldots) \) has associated with it a set of propositions, expressing between them the various ways matters can stand where \(m \) is concerned. (A proposition goes into the set if it is \(m(w) \) for some world \(w \).) The operation is again reversible: to find \(m(w) \), look for the proposition to which \(w \) belongs.

A subject matter can also be conceived, then, as (iv) a set of propositions. Sets of this type function in semantics as what is expressed by sentences in the interrogative mood. Questions, as they are called, stand to interrogative mood sentences \(Q \) as propositions stand to sentences \(S \) in the indicative mood.\(^8\) To find a \(Q \) expressing a particular set of propositions, look for one to which those propositions are the possible answers. This \(Q \) gives us an immediately comprehensible designator for the set of propositions at issue.\(^9\)

What, for instance, is the \(Q \) to which \textbf{There are exactly \(k \) stars}, for specific values of \(k \), are the possible answers? It is \textbf{How many stars are there?} We are dealing, then, with the issue or matter of \textbf{how many stars there are}. What is the question addressed by \textbf{You did BLAH last summer}, for specific values of BLAH? It is \textbf{What did you do last summer?} Thinking how to answer \textbf{What did you do last summer?} is considering the matter of what you did last summer.

\(^7\) This won’t work, of course, with any old function from worlds to sets of them. The proposition associated with \(w \) must be true in it; the propositions associated with different worlds should be identical or incompatible.

\(^8\) I will sometimes use “question” sloppily as standing also for the sentences.

\(^9\) By pointing us to the corresponding indirect question. The indirect question corresponding to \textbf{Do cats paint?} is \textbf{whether cats paint.} The indirect question corresponding to \textbf{Why do they paint?} is \textbf{why cats paint.}
2.3 MEREOTOPICOLOGY

One benefit of understanding subject matters this way is that lots of relations now become definable. \(m \) is orthogonal to \(n \) iff each cell of \(m \) overlaps each cell of \(n \). What this means at an intuitive level is that how matters stand \(m \)-wise puts no constraints on how they stand \(n \)-wise, and vice versa. The number of stars is orthogonal to the number of comets, because any number of stars is compatible with any number of comets. \(m \) is connected to \(n \)—you don’t need to know this!—iff they are not orthogonal, that is, one has a cell that does not overlap every cell of the other; they’re interwoven if no cell of one overlaps every cell of the other. \(n \) is part of \(m \) iff ... that’s what we’re coming to. \(m \) is disjoint from \(n \) iff they have no non-trivial parts in common; otherwise they overlap.\(^{10}\)

The relation of interest to us is part-of, along with its converse inclusion. The 19th century surely includes the 1820s, and what you did last summer includes what you did last July. Claims of this sort are intuitive in themselves, and required by clause (ii) of our schematic account of content-part (3), according to which \(B \) is part of \(A \) only if \(B \)’s subject matter is included in that of \(A \). But what is the definition?

One sees what subject-matter inclusion would be on the parts-based conception. Chunks of reality stand in inclusion relations right out of the box. But \(m \) doesn’t have to be part-based to include another subject-matter \(n \). The number of stars includes whether there are any stars, and is itself included in the number of stars and their ages. How are we to make sense of this on the present conception?

The larger subject matter is the one it is easier for worlds to disagree on, Lewis suggests. Considered as an equivalence relation, it is the stricter of the two. Considered as a partition, it’s the one with the smaller cells. You may recognize this from algebra as the refinement relation. But we will need to define it in a slightly non-standard way, to allow for the possibility that \(m \) and \(n \) are not defined on the same worlds.

5 \(n \) is part of \(m \) iff

(i) each \(n \)-cell includes an \(m \)-cell,

(ii) each \(m \)-cell is included in an \(n \)-cell—unless this is rendered impossible by its containing worlds on which \(n \) is not even defined.\(^{11}\)

\(^{10}\)Overlapping subject matters are always connected, Lewis shows, connected subject matters need not overlap. Lewis says he cannot think of an intuitive counterexample, but he had one under his nose. (The number of stars is connected to the number of planets, if we assume that planets have got to revolve around stars, for then the number of stars can constrain the number of planets; you can’t have zero stars and three planets. They are connected, but have no parts in common.

\(^{11}\)That is, the \(m \)-cell has members not belonging to any \(n \)-cells. An example may help. \(m \) and \(n \) are everyone’s lifespan and my lifespan. \(m \) ought surely to have \(n \) as a part. But, everyone’s lifespan has cells where I do not even exist. These can hardly be expected to lie within cells of my lifespan; I have a lifespan only where I exist. Cells wherein I fail to
HOW TO READ THIS BOOK

The number of stars includes (has as a part) the matter of whether the stars number more than a billion, because, on the one hand, worlds agreeing in how many stars exist are bound to agree in whether they number a billion, and on the other hand, worlds agreeing in whether they contain a billion stars are going to be subdivisible into worlds agreeing in how many stars they contain. What you did last summer includes what you did last July because worlds agreeing on what you did last summer are bound to agree on what you did last July, and the worlds in which you, say, slept through July can be further classified according to what you did in them last June and August.

Let’s return now to a question left hanging at the end of section 2.1. The observable is not a parts-based subject matter. It groups worlds together which look the same, and looking the same is not a matter of having indiscernible corresponding parts. The question was this: A theory is meant to be empirically adequate if it is true, not perhaps about the world as a whole, but the observable part of it. What could it mean for a theory to be true to the observable part of the world, if the observable is not a part of the world at all (but rather an aspect of it)?

Just as the Queen has to be distinguished from the Queen, the world—that all-inclusive object—has to be distinguished from the world—the all-inclusive subject matter.12 The observable may not be part of the world, but it is part of the world. And how matters stand observationally is part of how they stand overall. An empirically adequate theory is supposed to be true about how matters stand observationally.

2.4 TRUTH ABOUT A SUBJECT MATTER

A lot of philosophical problems take the form: Such and such has GOT to be the case. But how CAN it be? Pegasus does not exist, we say, and this seems true. How can it be, when there is no Pegasus for it to be true of? A color shift too small to notice cannot possibly make the difference between red and not red. But it sometimes must, or a slippery slope argument forces us to extend redness even to green things. You might see this “question” on Jeopardy: The number of its moons is considered unlucky. The correct “answer” is What is Neptune?. The number of Neptune’s moons—it’s 13—would be seen by most contestants as a no-brainer. How can it be a no-brainer that the F is thus and so, when the F’s very existence is debatable?

Philosophy is shot through with this sort of conundrum. I want to explore a new style of response, based on the examples we started with. The statements seem clearly correct, because the part we care about and fasten on is clearly correct. The number of Neptune’s moons is indisputably 13, because we see past the numerical bit to what it says about Neptune and its moons. Subliminal color differences seem irrelevant to whether a thing exist are exempted from the requirement, on account of containing worlds on which my lifespan is not defined.

12What above we called how matters stand overall.
is red, because we see through to the part about observational red; this by its nature is a matter that can’t be affected by an undetectable color shifts. And so on.

Now I must admit to fudging something. A falsehood, I keep saying, can be true in what it says about \(m \). The part about \(m \) can be true when the whole is mistaken. These two notions—what \(A \) says about \(m \), and the part of \(A \) about \(m \)—are not quite the same, and I have been running them together.\(^\text{13}\)

Take first what \(A \) says about \(m \). It is subject only to the requirement of being true (false) simpliciter when \(A \) is true (false) about \(m \). This says nothing about its subject matter, in particular not that its subject matter is included in the subject matter of \(A \). The part of \(A \) about \(m \) is supposed, obviously, to be part of \(A \). But then its subject matter \emph{does} have to be included in that of \(A \). What \(A \) says about \(m \) differs from the part of \(A \) about \(m \) just in this one respect. I want to focus for now on the weaker construct: what \(A \) says about \(m \).\(^\text{14}\) The part of \(A \) about \(m \) is left to sections 3.4.1 and 3.4.2.

So, what does \(A \) say about \(m \)? The proposition here is true, we said, just if \(A \) is true about \(m \). For \(A \) to be true about \(m \) means that \(A \), should it be false, is at any rate not false because of how matters stand with respect to \(m \). This admits of a simple test: \(A \) is true about \(m \) if one can make \(A \) true outright without changing how matters stand where \(m \) is concerned.

\[A \text{ is true about } m \text{ in } w \text{ iff} \]

\[A \text{ is true simpliciter in a world } m\text{-equivalent to } w. \]

That is fine as a definition. But we need to know what kind of compliment we are paying \(A \) when we call it true about \(m \). Does truth about the subject matter under discussion make it “as good as true” for discussion purposes? Does “true about \(m \)” function in descriptions of \(w \) the way truth simpliciter does? One has to be careful here.

Truth about \(m \), considered as a modality, is possibility-like: \(A \) is true about \(m \) in \(w \) just if it \emph{could} be true, for all that \(w \)’s \(m \)-condition has to say about it. The logic of directed truth can to some extent be read off the logic of possibility. As we know, hypothesis and its negation can be possible at the same time. Similarly there is nothing to stop them from both being true about \(m \).\(^\text{15}\) Call this the phenomenon of \textit{quasi-contradiction}.

Statements true about \(m \) in a world \(w \) are supposed to encode genuine information about \(w \). They are supposed to “get something right.” That is why

\(^{13}\)Thanks here to Yu Gao.

\(^{14}\)It has the advantage of always existing. There is not always such a thing as the part of \(A \) about \(m \). To see why, consider what its subject matter would be. It will have on the one hand to be included in \(A \)’s subject matter \(a \); otherwise it’s not part of \(A \). It should on the other hand connect up somehow with \(m \); otherwise it’s not the part of \(A \) about \(m \). These conditions pull against each other, if \(m \) and \(a \) are unrelated.

\(^{15}\)That a world’s \(m \)-condition permits \emph{each} of \(A \) and \(\neg A \) to be true doesn’t mean it permits them both to be true together. Truth about \(m \) is not agglomerative.
we introduced the notion. Isn’t it a problem if they contradict each other? Let’s see how the problem would go. If statements are true about \(m \) in \(w \), they will be used to describe \(w \), because they get something right. A statement and its negation cannot both get something right. Quasi-contradictions thus commit us to claims that do not get anything right.

Rather than picking this reasoning apart, I will present three scenarios, or cases, in which the supposed problems do not arise. (We can then ask where the reasoning goes wrong.) The scenarios have us first quasi-asserting neither statement, then both, then one and not the other.

(Case 1) \(A \) gets no grip on \(m \). Every \(m \)-condition is compatible both with \(A \) and its negation. No big surprise if an \(m \) that \(A \) is not at all about fails to decide its truth-value in \(w \). Granted, \(\text{Dogs bark} \) and its negation are both true about the number of cats. But so what? One would not be using them to describe cats in the first place. They get nothing right about cats.

(Case 2) \(A \) does get a grip on \(m \); not every \(m \)-condition is compatible both with \(A \) and its negation. Just for this reason, it says something about \(w \) that its \(m \)-condition leaves \(A \) undecided. Why should \(A \) and \(\lnot A \) not be used to convey this something? \(A \) conveys that it is permitted by the world’s \(m \)-condition. \(\lnot A \) conveys that it too is permitted by the world’s \(m \)-condition. That both are permitted is conveyed by \(A \) and \(\lnot A \) together. Are seventeen-year-olds adults? They are and they aren’t. Is Turkey part of Europe? It is and it isn’t. Yes and no conveys, in these cases, that neither answer is forced on us; both are permitted.

(Case 3) The number of planets > 3 is true about concreta; it’s true in existing physical circumstances, supplemented if need be by the natural numbers. That, supposedly, is why we assert it. But then shouldn’t we assert its negation as well? It too is true (isn’t it?) in existing physical circumstances, since the numbers can equally be left out. \(^{16} \) (3a) Maybe The number of planets > 3 semantically presupposes numbers, in such a way that its negation is undefined in numberless worlds. A statement counts as true just if it is true in all worlds \(m \)-equivalent to our own in which it has truth-value. The number of planets > 3 counts as true since it is true in our \(m \)-cell where evaluable; its negation is false in our \(m \)-cell where evaluable. \(^{17} \) (3b) Maybe The number of planets > 3 presupposes numbers only in a pragmatic sense. Its negation is true in numberless worlds, hence true here about concreta. To count as true is to be true about \(m \) “but for \(P \),” \(P \) being the presupposition; the statement must hold in all \(P \)-worlds \(m \)-equivalent to our own. The number of planets > 3 counts as true because it is true but

\(^{16}\) By what? The facts, in the fait accompli sense of things settled and done. See Ripley [2011] on the seeming assertability of Yes and no.

\(^{17}\) I’m objecting here mainly to (1).

\(^{18}\) “True where defined,” considered as a modality, is necessity-like. See 7.
for the possibly absent numbers.19

(3c) The number of planets > 3 does not presuppose numbers at all. Its negation is true in numberless worlds, so true here about concreta. To count as true, a statement must be true in the “best” worlds m-equivalent to our own—the ones where it reveals its true colors. The best such worlds for a mixed-mathematical statement will contain numbers.20

Truth about m may seem like all the truth one could want, when the subject matter is m. This formula works well enough for most purposes. Occasionally though, we’ll want to check that S is true, not only in some m-equivalent world, but all m-equivalent worlds of the right type.

2.5 WAYS OF BEING

How many ways can it go in a world, where a given subject matter is concerned? Of course, m might not even be defined on w. The actual world is not in any particular condition as regards the first Finnish matador. But if w is in some m-condition or other, then, Lewis would say, it is in exactly one such condition. Subject matters are, in a word, exclusive. There is nothing to stop different worlds from being in different m-conditions, as for instance if \(m = \text{the number of stars} \) and one of the worlds has more stars than the other. Different m-conditions are possible, though, on Lewis’s view, only if they are incompatible; we never get two of them in the same world.

Is this right? One way matters stand here at home with regard to the number of Martian moons is, you might think, that Mars has got an even number of moons, while another is that Mars has a prime number of moons. That is the wrong way to look at it, Lewis would say. That there are evenly many of them, and primely many, are aspects of how matters stand in @ where the number of Martian moons is concerned. How they stand in toto is that Mars has an even, prime number of moons, in other words, two moons. Partial m-conditions can hold in the same world. Full m-conditions are pairwise incompatible; no world is in more than one.

A similar view is sometimes taken of questions. Q may appear to have two correct answers in w. But that just shows, it is said, that the “answers” are not complete, and so not answers at all, properly speaking. Evenly many and primely many are two correct replies, if you like, to how many moons does Mars have?, but they cannot be considered answers. To answer the question would be to put the number of Martian moons at two. Call this the exclusivity assumption about questions.

About questions, it can seem restrictive. No room is left for “mention-some” questions like \(Q = \text{Where can I get an Italian newspaper?} \). This is a different question from \(Q' = \text{What are all and only the places where I can get an Italian newspapers?} \). I can answer Q but not \(Q' \) by saying, At the railway

19= True but for \(P' \) is necessity-like. See again ?.
20= True in the best m-equivalent worlds” is necessity-like as well.
station, or At Cafe Roma. This goes against exclusivity, as there may be Italian newspapers at both places. Again, if Mom asks, Who wants gum?, then (assuming unlimited supplies of gum), I do is a perfectly satisfactory answer. Mom is not expecting you to have in your possession a complete list of gum-wanters. Another satisfactory answer is She wants gum, speaking for a child in the next room. This pushes against exclusivity, too, since there is nothing to stop us from both wanting gum at the same time. A case can be made for broadening our view of questions so that answers need not be incomplete to be compatible.\footnote{Some would say the difference here is pragmatic. The first way of putting it signals that existential answers are \textit{forgivable} or even \textit{desirable}, not that they are complete. I assume \(Q \) and \(Q' \) differ semantically, not just in the speech acts performed with them.}

Back now to subject matters. The number of stars calls for the \textit{exact} number. Let \(m \) be the number of stars give or take ten, and suppose \(w \) has a thousand stars exactly. One way matters stand with respect to \(m \) is this: There are between 993 and 1003 stars. Another is: There are between 997 and 1007 stars. These two \(m \)-conditions are no less distinct for being compatible. Or consider the matter of why so and so is qualified for the job, when they are overqualified. Louisa is a doctor and a lawyer, when either credential would be enough. That she is qualified both ways at once means the actual world is in both \(m \)-conditions. Observational subject matters belong here, too. Suppose \(w_1 \) is visually indiscernible from \(w_2 \), and \(w_2 \) from \(w_3 \); but \(w_1 \) can be told apart from \(w_3 \). Then \(w_1 \) is two ways with respect to how things look—the way it has in common with \(w_1 \) and the one it has in common with \(w_3 \). These are different since \(w_1 \) does not look like \(w_3 \).

One gets a partition if likeness-where-\(m \)-is-concerned is an equivalence relation, and so transitive. Likeness on the score of how things look is famously not transitive. Likeness on the score of the number of stars give or take ten is not transitive, either; if three worlds have respectively 1000, 1006, and 1012 stars, then the first is like the second, and the second is like the third, but the first is not like the third, since the difference is now more than ten. Again, if Louisa is a doctor but not a lawyer in \(w_1 \), a doctor and a lawyer in \(w_2 \), and a lawyer but not a doctor in \(w_3 \), then she is similarly qualified in \(w_1 \) and \(w_2 \), and in \(w_2 \) and \(w_3 \). But Louisa’s qualifications in \(w_1 \) are completely different from her qualifications in \(w_3 \).

Here, then, is our second departure from Lewis.\footnote{The first was to allow partial subject matters and extend the definition of part/whole accordingly.} Subject-matters will be similarity relations rather than equivalence relations; symmetry is still required, and reflexivity, but not transitivity. Alternatively we can think of them as “divisions” of logical space—divisions are the set-theoretic whatnots standing to similarity-relations as partitions stand to equivalence-relations.\footnote{The partition of \(E \) corresponding to an equivalence relation \(\equiv \) is \(\{ C \mid C \text{ is maximal among subsets } D \text{ of } E \text{ such that } x \equiv y \forall x, y \in D \} \). The \(C \)'s are called equivalence classes. Likewise the division of \(E \) corresponding to a similarity relation \(\approx \) is}
This liberalized conception of subject matter proves its worth with the subject matters of sentences. These, as already hinted, have to do with a sentence’s reasons for, or ways of, being true. S can be overqualified for the position of *true description of reality*, much as Louisa was overqualified for the position she was seeking.

Take a simple disjunction $p \lor q$; p is true, if it is, by virtue of p and q is true by virtue of q. $p \lor q$ is true for a shared reason (p) in $p \land \neg q$-worlds and $p \land q$-worlds, and another shared reason (q) in $p \land q$ and $\neg p \land q$-worlds. But it is true for entirely different reasons in $p \land \neg q$-worlds as $\neg p \land q$-worlds. True for the same reason, or in the same way is not an equivalence relation. It corresponds to a division of logical space rather than a partition of it. This confirms us in our decision to let subject matters be made up of incomparable propositions (none entails any other) that are not necessarily incompatible (they may or may not entail others’ negations). The definition of subject matter inclusion works just as before. The number of stars give or take five includes The number of stars give or take ten because any way things can be regarding the first score implies a way they can be with regard to the second, and (ii) any way things can be regarding the second is implied by a way they can be regarding the first.\footnote{That the number lies in the 98-103 range, for instance, puts it between 95 and 105.} \footnote{I believe we will need ultimately to depart even further from Lewis. A division is made up of maximal sets of pairwise similar worlds. No such set can include another, so the sets are incomparable, making the ways things can be m-wise incomparable, too; none entails any other. Consider now The number of stars is between 95 and 105 and The number of stars is between 98 and 103. Both are ways for things to be where the approximate number of stars is concerned, but, or rather so, the approximate number of stars is not a division. More general than divisions are covers: arbitrary sets of subsets of the set that is covered. Every cover induces a similarity relation; items are similar if one of the chosen subsets contains both. But the same similarity relation is induced by any number of covers. I have decided for practical reasons to stick with divisions, leaving covers to footnotes, but “really” the whole thing should be redone with them. (Thanks here to Kit Fine and Johan van Benthem.)}

2.6 WHOLLY ABOUT

One question is, what are subject matters considered as entities in their own right? A different question is, which of these entities is the subject matter of a given particular sentence S? Often one winds up discussing both of these at the same time. But the distinction is still important. Lewis has a well developed theory of subject matters qua self-standing entities. But all he says about the second question (the “coordination” question) is this:

7 S is wholly about m iff S’s truth-value supervenes on m, that is, S always evaluates the same in m-equivalent worlds.

\[
\{ C \mid C \text{ is maximal among subsets } D \text{ of } E \text{ such that } x \approx y \forall x,y \in D \}.
\]

The Cs are called similarity classes. For discussion see Williamson [1990] and Hazen and Humberstone [2004]. Hazen and Humberstone use “decomposition” where we say “division.”
He immediately notes a difficulty. An S that supervenes on m cannot help but supervene on any m^+ dividing logical space still more finely; the subject matters S is wholly about are “closed under refinement”. A sentence that is wholly about the number of stars, for instance, is also wholly about the number of stars and their combined mass. This is not a particularly happy result. It means that no matter how intuitively unrelated two sentences may be, they have a subject matter in common, viz. how matters stand in every respect.

A further problem with (7), given our project here, is this. A given sentence has lots of subject matters, on Lewis’s definition; there is no such thing as “the” subject matter s of S. But our proposed theory of content-parts requires such an s. A includes B only if a includes b; that is what inclusion adds to implication.

What is going on here? The “wholly” in “S is wholly about m” can be taken in two ways. One might hear it as focussed on the sentence: S is is concerned wholly with m; it doesn’t care about anything else. But it can also be heard as focussed on m: S is concerned with m in its entirety; there is nothing in m with which it is not concerned. To see the difference, suppose x is the maximal subject matter, and let S be Maine is prosperous. S is wholly about x in the first, Lewisian, sense. It is not about anything else, simply because there isn’t anything else to be about. But S is not about x in its entirety; there is plenty in how matters stand in every respect with which Maine is prosperous is not concerned at all.

Ideally we would like a notion of subject matter that respected both of these “wholly”’s. Ideally, S’s subject matter would include everything S concerns, and nothing that S does not concern. The upward closure point means Lewis has achieved the first goal but not the second.

If we read aboutness Lewis’s way, S winds up being about larger subject matters than we wanted. How do we knock these out? The strategy that suggests itself is to look for the least subject matter which S is (in Lewis’s sense) wholly about.

This gives us something far too small, however, viz. the two-cell subject matter whether or not S. Let’s first confirm first that S is indeed wholly about whether or not S. A sentence is wholly about m if its truth-value never varies within a cell. The cells in this case are (i) the worlds where S is true, and (ii) the worlds where S is false. Clearly S’s truth value never varies between worlds where S is true! Nor does it vary between worlds where S is false. So we have the supervenience of truth-value on m-condition that defines “wholly about.” It remains to check that whether or not S is the smallest (the coarsest) subject matter m such that S’s truth-value never varies within any m-cell. The only genuinely smaller m is the trivial subject matter that puts all worlds into a single cell. (Whatever, I am tempted to call it.) The minimizing strategy delivers an m that is much too small. It is not as bad as whatever, I’ll grant you that. But we would like to do better.26

26Size is only one problem. Another is that inclusion relations are trivialized; whether
2.7 EXACTLY ABOUT

How do we obtain a subject matter that S is “exactly” about. The s we’re looking for has two properties: S is oblivious to matters lying outside of s, and attentive to everything within it. Our idea was to look for the least m satisfying some appropriate condition. The condition we tried in the last section—the one that delivered $\text{whether or not } S$ — was too weak; there might be various ways for matters to stand subject-matter-of-S-wise whereby S comes out with the same truth-value. A couple of examples where this occurs will help us to figure out how to strengthen it.

The world will end in fire or in ice, Frost thinks. One way for things to arrange themselves s-wise is for the world to end in fire; another is for it to end in ice. I take it that matters stand differently with s in fiery-end worlds than in icy-end worlds. But both are in the same cell of whether or not S: the cell where S is true. The second example is from American politics:

$$S = \text{The US President in 2001 is a senator’s son.}$$

in w, the president is Dubya, son of former senator George H.W. Bush.
in w', the president is Al Gore, son of former senator Albert Gore, Sr.

S is true either way. All that’s changed is the personnel; the President and his father are now different people. This is enough, it seems, to change the state of things where s is concerned. A transworld reporter on the S beat could not claim that there was nothing to report—that it doesn’t matter, from a subject matter of S perspective, who plays the two key roles.

A change in personnel is more newsworthy than a change in the price of cotton. It is pretty clear why. The personnel change is a change in the individuals witnessing S’s truth; a change in the witnesses affects how S is true; and changes in how a sentence is true cannot be changes in an aspect of reality that S is not even about. The explanation in the Frost case is similar. How the world ends makes a difference to the subject matter of The world will end in fire or in ice insofar as it toggles the sentence’s way of being true. This gives us a new and improved lower bound on the relations qualified to serve as S’s subject matter. Some helpful terminology: S is “differently true” in two worlds iff it is true in different ways.

27 Some say the world will end in fire, some say in ice. From what I’ve tasted of desire, I hold with those who favor fire. But if it had to perish twice, I think I know enough of hate, To say that for destruction ice Is also great, and would suffice.

28 By “changes in, or with respect to, S’s subject matter s,” I mean qualitative changes—changes in how matters stand s-wise—not numerical ones—changes in which subject matter the sentence has. S’s subject matter changes qualitatively if the Presidency goes to Gore, numerically if S comes to mean, say, that the Cretan Queen is a minotaur’s mom (as Pasiphaë supposedly gave birth to the minotaur Asterion when Queen of Crete).

29 In entirely different ways, or ways some of which are different? One needn’t worry about this just yet, but it’s the former.
8. S cannot be differently true in two worlds, unless things have changed
where its subject matter is concerned.\footnote{Again, we needn’t get too precise right now, but “things have changed” means the worlds are not s-similar.}

S must first take notice of a phenomenon, the thought is, before variation in
that phenomenon can affect how it is true. Sentential subject-matter should
be at least as fine-grained as ways of being true.\footnote{Explicitly: let r be chosen so that worlds are r-dissimilar iff S is differently true in
them. Then the subject matter of S includes r. Our new lower bound on S’s subject
matter is how S is true (the old one was whether S is true).
}

An upper bound would be nice, too. After all—to state the obvious—not any old way of tweaking a world affects the state of things where S is
cconcerned. A lot of the tweaks are going to be off-stage, or beneath S’s
radar. Mars has two moons takes no notice if the Presidency goes instead
to Gore, or toothpaste comes in more flavors.

Now, the tweaks that do not attract S’s attention must presumably have
something in common, to distinguish them from the ones that do. Ideally
it would be the same sort of common element for every sentence; we are
operating at that level of generality. This is not an argument, but I ask you:
what could these tweaks have in common, if not their irrelevance to how S
obtains or is true?

9. Something has changed, between one world and another, where its
subject matter is concerned, only if S is differently true in the two
worlds.\footnote{Take again S = The President is a senator’s son. Clearly S is not (even slightly)
about how many stars there. Why not? (9) says: S is not about the number of stars,
because the number of stars is of no possible relevance to how it is true.
}

Sentential subject matter should be at most as fine-grained as ways of
being true.\footnote{Explicitly: Let r be chosen so that worlds are r-dissimilar just if S is differently true in
them. Then S’s subject matter is included in r.
}

The new upper bound is the same as our previously established
lower bound. So we have pinned down sentential subject matter uniquely.

10. the subject matter of S

= the similarity relation m such that worlds are m-dissimilar iff S is
differently true in them.\footnote{This also defines “exactly about.” S is exactly about m iff worlds differ with respect
to m just when S is differently true in them.
}
2.8 MATTER AND ANTI-MATTER

Subject matters as explained by (10) are not evenhanded as between truth and falsity. They are not even defined, unless the sentence is true. This causes three sorts of problem.

(1) Suppose S is false in world w. How do matters stand there where its subject matter is concerned? (10) says they don’t stand any way. That is not plausible. S is false for a reason, presumably, or in some manner or way. That reason is to be found in the goings-on in w to which S addresses itself. To put it the other way around, if there is nothing going on in w to which S is answerable, then it is hard to see why S should be false there.\(^{35}\)

(2) What a sentence is about is one thing; whether it is right about it is something else. One should be able to grasp what S is about while remaining ignorant of its truth-value. This is not possible, if s is how S is true. The question presupposes it is true in w: so to determine S’s truth-value in w, I need only (according to (10)) ask myself whether w is one of the worlds on which s is defined.

(3) Negating a hypothesis should leave its subject matter unchanged. $\neg S$ is about whatever S was about, and vice versa. This is not predicted by (10), or even allowed by it. The subject matter s that (10) assigns to S is entirely different from the one \overline{s} that it assigns to $\neg S$. The two are not even defined on the same worlds.

So—if the subject matter of a sentence is how S is true, we get three very unfortunate results: S has truth-value in worlds where its subject matter draws a blank; learning what S is about tells you its truth-value; negating S changes what it’s about. It appears that $s = \text{how } S \text{ is true}$ is only half of the story. The other half is $\overline{s} = \text{how } S \text{ is false}$. s can be considered (thanks here to John MacFarlane) the subject anti-matter of S. The two together constitute S’s overall subject matter \bar{s} ($\bar{s} = \{s, \overline{s}\}$). This addresses the problems we raised above; S’s overall subject matter is

(1) defined wherever S has a truth-value
(2) graspable in complete ignorance of S’s truth-value
(3) identical to the overall subject matter of $\neg S$

(1) holds because S’s overall subject matter includes its subject anti-matter. (3) holds because S’s subject pro-matter = the subject anti-matter

\(^{35}\) Mt Everest has never been climbed is false in the actual world \emptyset. To go by (10), \emptyset is in no particular condition where S’s subject matter is concerned. But then why is S false in w? It seems not irrelevant that Everest was climbed by Edmund Hilary and Tenzing Norgay. How could a fact like that not play a role in the (actual) state of things where S’s subject matter is concerned?
of its negation.36 (2) holds because to recover \(S\)’s truth-value from \(\hat{s} = \{s, \overline{s}\}\), you must know which of \(s, \overline{s}\) is the pro-matter and which the anti-matter. One can of course tell from the notation employed that \(s\) is meant to be pro- and \(\overline{s}\) is meant to be anti-. But the set itself does not come annotated. Whether \(S\) is true is no more determined by the fact that \(s\) and \(\overline{s}\) are (in some order) its subject matter and \(\neg S\)’s than by the fact that “true” and “false” are (in some order) their truth-values.

\section*{2.9 SUMMING UP}

A few philosophers have tried to think systematically about subject matter. Ryle thought a sentence was about the items mentioned in it. Goodman thought it was about the items mentioned in certain of its consequences. Lewis was the first to consider subject matters as entities in their own right, and the first to link a sentence’s subject matter to what it says, as opposed merely to what it mentions. Lewisian subject matters are equivalence relations on, or partitions of, logical space. A sentence \(S\) is wholly about \(m\) if its truth-value in a world \(w\) is fixed by how matters stand \(m\)-wise in \(w\). But he never identified anything as the subject matter of sentence \(S\)—the one it is exactly about. We define it as the \(m\) that distinguishes worlds according to \(S\)’s changing ways of being true in them. Subject anti-matter is defined analogously, and \(S\)’s overall subject matter is the two together. Aboutness comes out independent of truth-value, as we would hope. A sentence is not about anything different from its negation.

36That is, \(s = \overline{\overline{s}}\). Proof that subject matter is preserved: \(\hat{s} = \{s, \overline{s}\} = \{\neg \overline{s}, \neg s\} = \{\neg s, \overline{\overline{s}}\} = \overline{\overline{\hat{s}}}\)
Chapter Three

Inclusion in Metaphysics and Semantics

3.1 PARTS OF CONTENTS

At this point we know quite a lot. We know what subject matters are. We know for each indicative mood sentence \(S \) how to obtain its subject matter—the one it is exactly about. We know what it takes for one subject matter to include another. The larger subject matter has to refine the smaller one. We know, then, what it means for \(A \)'s subject matter to include that of its consequence \(B \), which is the same as \(B \) being part of \(A \). The form of the definition, slightly elaborated from (3) above, is

\[
11 \quad B \text{ is part of } A \text{ just if the argument } A, \text{ so } B \text{ is}
\]

\[
1. \text{ truth-preserving } - A \text{ implies } B
2. \text{ aboutness-preserving } - A \text{’s subject matter (anti-matter) includes } B \text{'s}
\]

Aboutness is preserved if worlds where \(B \) is true is true in different ways cannot have \(A \) true in the same way. (11) then becomes

\[
12 \quad B \text{ is part of } A \text{ if and only if
}
\]

\[
1. \text{ A implies } B
2. \text{ how } B \text{ is true cannot change without changes in how } A \text{ is true}^1
3. \text{ how } B \text{ is false cannot change without changes in how } A \text{ is false}
\]

Thinking of subject matters as cellular, along the lines of (5), every b-cell should contain an a-cell, which comes to \(B \)'s ways of being true (false) all being implied by ways for \(A \) to be true (false). In the obvious notation:

\[
13 \quad B \text{ is part of } A \text{ if and only if}
\]

\[
1. \text{ A implies } B
2. \text{ each } B^\uparrow \text{ is implied by an } A^\uparrow
3. \text{ each } B^\downarrow \text{ is implied by an } A^\downarrow
\]

1 More precisely: if \(B \) is differently true in two \(A \)-worlds, then \(A \) is differently true in those \(A \)-worlds. Better yet (as in (12)): every way for \(B \) to be true is implied by a way for \(A \) to be true. Better yet, though this requires the liberalization mentioned in note 25 of section 2.7: every \(B \)-world is \(B \) in a way that is implied by some way of being \(A \).
3.2 PARTS AS SUCH

Are content-parts really parts? *Mares eat oats and does eat oats* ought to stand to *Mares eat oats* in a relation not utterly disanalogous to the one bicycles bear to their frames, and sets bear to their subsets, and being hot and tired bears to being tired. But now a worry arises. Content-inclusion involves subject-matter inclusion. Bicycles, sets, and properties don’t have subject matters. Hold that thought for a moment. Our original question was, do content-parts have whatever it is that ties subsets, material parts, and so on, together. There will be time to wonder what bicycles are about when we answer that. Part/whole is a highly unselective relation. If *x* is somebody’s aunt, that tells you *x* is a person. To divide *y* evenly, *x* should probably be a number. If *x* is closer to the North Pole than *y*, then it is not a number. Most relations are like that; they are selective in the sense of obtaining only between certain kinds of thing. To learn that *x* is part of *y*, however, tells you nothing. Ontologists have invented, or discovered, some pretty strange entities; but there is nothing so ontologically outre as not to stand in part-whole relations.

One would like to think that part/whole is the same relation, or the same kind of relation, in all its incarnations. The leg and the table are carrying on in the same sort of way as Saturday and the weekend, “sky” and “skyscraper,” okra and gumbo, Maine and New England, the play and its first act, etc. You may say that part/whole is always transitive, reflexive, and antisymmetric: a partial order. But this, even if true, is not saying much, since “most” partial orders have nothing part-whole-y about them.

Consider, for instance, the relation of coming-later-in-the-week-than. Saturday comes later than Friday, why is it not part of Friday? One might look here to mereology’s other axioms, beyond those defining a partial order. The one usually mentioned next is Supplementation: *y* is properly part of *x*, only if a *z* exists that “makes up the difference” between them. Certainly it is hard to think of a *z* that counts intuitively as what Friday adds to Saturday. This is not, however, because the axiom itself is so demanding. Models are not so hard to devise. The problem is that our sense of what we want in a part goes beyond the axioms.

I do not pretend to know all the reasons that Saturday strikes us as part of the weekend, but not of Friday. One striking difference, though, is the following. What happens on Saturday has immediate ramifications for what happens on the weekend, but not for what happens on Friday. Change the part and you cannot help but change the whole. It’s the same with New England and Maine. The play changes when we rewrite the first act. The principle here is

14 Upward difference transmission: *y* is part of *x* only if *y* cannot change

2Meaning, a *z* exists that is disjoint from *y* and sums with *z* to form *x*.

3I am stretching the word “change” to cover transworld variation; the number of stars changes between our world and one with additional stars.
(in specified respects) while \(x \) remains the same (in those respects).

This is highly schematic, of course; one has to specify the “respects” for each application. Take first material objects. A bicycle frame \(y \) is part of a bicycle \(x \), only if \(y \) cannot change intrinsically without \(x \) doing so as well. The frame can’t be bent or heated up while the bicycle sails on undisturbed.

If \(x \) and \(y \) are sets, it is membership changes that percolate up. The set of birds is not included in the set of flying things,\(^4\) for every new penguin changes the membership of the first with no such effect on the second.\(^5\)

If \(x \) and \(y \) are pluralities, both sorts of variation—in intrinsic character, and membership—seem like they ought to percolate up. The Crown Jewels are among my possessions only if it reduces my possessions to destroy some of them, and rearranges my possessions to rearrange the Crown Jewels.

When it comes properties, it’s how they’re possessed percolates up. Rectangularity includes the property of being a polygon if a figure cannot be identically rectangular, in two worlds, but differently polygonal. Negative charge includes charge, because a rod cannot lose charge while maintaining its negative charge. Grue is included in grue-and-sithery because a snake that is grue here by being green and examined, there by being blue and not examined, has changed too in its way of grue-and-sithery.

Changing the part results, in one category after another, in variation in the whole. With material objects, it is changes in intrinsic character that percolate up. With sets, it is changes in membership. With properties, it is changes in manner of possession. A thing’s way of being grue affects its way of being grue and sithery.

What should we expect to percolate up in the case of content-parts? Ways of being \textit{true}, it must be, for a thing’s way of being \(P \) changes just when \textit{It is} \(P \) changes in how it is true. \textit{This is grue and sithery} includes \textit{This is grue} for essentially the same reason as \textit{grue-and-sithery} includes grue. The difference is only that ways of being grue are replaced by ways for \textit{This is grue} to be true. This gives us another, perhaps directer, route to the present conception of content-part.

\section{3.3 Part-Construction}

Content-part has been explained as a relation on \textit{sentences}.\(^6\) This sits ill with our equation of partial truth with truth of a part. Whether \(A \) has truth in it ought not to depend on whether the language happens to contain

\footnotesize
\begin{itemize}
\item \(^4\)Lewis [1991]
\item \(^5\)Assume for example’s sake that sets can survive changes of membership. Alternatively we could speak of one set being \textit{replaced} by another.
\item \(^6\)Or perhaps, a binary sentential operator yielding a truth just when \(B \), is in the relational sense, part of \(A \). The model is C. I. Lewis’s fishhook. \(A*B \) is true just if \(B \) is strictly implied by \(A \). \(A\geq B \) is true if \(A \) strictly implies \(B \) and \(A \)’s subject matter includes the subject matter of \(B \).
\end{itemize}
a sentence B that captures the truth. The unavailability of such a sentence could be the reason we’re using A in the first place.

One might think that A is partly true if the language could contain a B like that—a true B that was part of A. This puts the emphasis in the wrong place. Our hypothetical B would be part of A in virtue of what it said: the proposition B that it expressed. A’s real reason for being partly true lies in the relation B establishes between A and B. Shall we say that A is partly true if a sentence that expressed B, if there were one, would be part of A? That may be right, but the sentence is doing no work here; one B is as good as another. A is partly true if it includes a truth, possibly a propositional truth not expressed by any readily available sentence.

But, how are these propositional truths, which confer partial truth on A, to be identified, in the absence of associated sentences? That is the wrong way to think about it. A’s propositional parts don’t have to be picked out of a crowd; they are constructed. A rule will be given that determines, for each A and lewisian ssubject matter m, a proposition that deserves to be called the part of A about m, or, more carefully, deserves that title if any proposition does.

Now, A itself already expresses a directed proposition. It combines a truth-conditional content A (telling us whether A is true in a world) with a subject matter a (telling us how it is true). Using single uprights for “the truth-conditional content of... ” and angle brackets for “the subject matter of...,”

15 The directed proposition that A, consists of

1. $|A| = A = A$’s truth-conditional content, and

2. $<A> = a = A$’s subject matter.

The part of A about m will similarly involve a truth-conditional content and a subject matter. To maintain the parallel with (15), these are seen as attaching to a dummy sentence A_m. Our task is to construct

16 The proposition that A_m—consisting of

1. $|A_m| = A_m$’s truth-conditional content, and

2. $<A_m> = A_m$’s subject matter

The subtasks here are addressed in the next two sections,

7A lewisian subject matter, recall, is an equivalence relation on worlds. That the part of A about m is defined only for lewisian subject matters m does not mean that its subject matter is lewisian, and indeed it is generally not.
3.4 THE PART OF A ABOUT SUCH AND SUCH

3.4.1 When is it True?

What should a world be like, for A_m to be true in it? A should be true about m in that world. This will be the case if either (i) A is true in w, or (ii) A is false there for reasons unrelated to m—reasons that can be undone without changing how matters stand m-wise. A concept from algebra comes in handy here. Suppose X is a set and \equiv is an equivalence relation on X.

17 X/\equiv is the result of expanding X to include everything equivalent to any of its members.

X/\equiv is the quotient set, and the operation taking X to the quotient set is “dividing through by \equiv.” $|A|$ divided through by m is the (thin) proposition that is true in exactly the worlds where A is true about m. This is the proposition we want for A_m’s truth-conditional content.

18 $|A_m| = |A|/m = \{\text{the set of worlds where } A \text{ is true about } m\}$.

The truth-conditional content of A_{nos}, for instance, is obtained by dividing the truth-conditional content of A through by the number of stars. What do we get if A is There are more stars than planets? We get the worlds with exactly as many stars as some world whose stars outnumber its planets. A world with any stars at all has that property. Truth-conditionally speaking, what There are more stars than planets says about the number of stars is that it is not the case that there are no stars at all.

Another example. The creation and destruction of macro-objects is, according to Democritus, really just the rearrangement of atoms. The atoms themselves are eternal. One day, let’s imagine, Pythagoras convinces him that nothing persists but numbers. He learns from Heraclitus that atoms seem to persist only because new ones are constantly rushing in to replace the old. What’s really going on, he decides, is that

(D) The number of atoms is constant over time.

Then Democritus remembers that he cannot, as a materialist, accept D’s implication that there it at least one abstract object. He would like to hold (D) responsible only for its concrete implications. But he is not sure how to arrange this. If both kinds of implication are there, why would D not be evaluated also on the basis of its implications for mathematical ontology?

8"One way in which the quotient set resembles division is that if X is finite and the equivalence classes are equinumerous, then the number of equivalence classes can be calculated by dividing the number of elements in X by the number of elements in each equivalence class. The quotient set may be thought of as the set X with all the equivalent points identified" (Wikipedia).

9"Exercise: Show that $|A|$ divided by m is A’s strongest implication that is, in the sense of definition (7), wholly about m."
The proposed answer is that he is not, when he advances D, talking about mathematical ontology. He is talking about concreta. D is of interest because of what it says about that. The part of D about concreta is a proposition true in w if either (i) w is a platonist world in which D is true, or (ii) w is a nominalist world in which D is false for irrelevant reasons: reasons that can be fixed while leaving concreta unchanged. One of these scenarios—D is true, or false for irrelevant reasons—obtains, in his view, whenever w is concretely indiscernible from a D-world. If w is platonistic, then D is true outright. If not, still, numbers are not prevented from existing by w’s material condition. D holds when they are added back in. Either way, D is true to how matters stand concretely. The concrete world, in Balaguer’s phrase, holds up its end of the bargain.

3.4.2 What is it About?

To be part of A, A_m will need as well a subject matter, and that subject matter will have to be included in the subject matter of A.\(^\text{10}\) It will need ways of being true that are implied by A’s ways of being true, and ways of being false that are implied by A’s ways of being false. Anticipating a bit, allow me to speak of A_m’s ways of being true or false as its truthmakers and falsemakers.

What are they going to be? A_m’s truth-conditions were obtained by dividing $|A|$ by m, its truthmakers are obtained by dividing A’s truthmakers by m. A truthmaker for D might be: $|$The number of atoms is always 1$. To obtain from this a truthmaker for D_{concreta}, we divide by concreta. Let us calculate.

\[
\begin{align*}
|\text{The # of atoms is always 1}| \text{ divided by concreta} & = \{ w \mid \text{The # of atoms is always 1 is true about concreta in } w \} \\
& = \{ w \mid w \text{ is in concrete respects like a } v \in |\text{The # of atoms is always 1}| \} \\
& = \{ w \mid \text{there is always a single atom in } w \} \\
& = \text{the (thin) proposition that there is always a single atom.}
\end{align*}
\]

So far, so good. Now we look for A_m’s ways of being false. Using again the arrow notation from section 3.1, we are looking for $A_m \downarrow$. We know that any $A_m \downarrow$ will have to be implied by an $A \downarrow$—otherwise A_m could not be part of A. If the implication were proper, $A \downarrow$ would be stronger than needed to ensure A’s falsity ($A_m \downarrow$ already ensures this, by modus tollens). As a falsemaker, though, it should not be stronger than needed.\(^\text{11}\)

\(^{10}\)The title question sounds paradoxical. What else is the part of A about m going to be about, if not m? A’s subject matter is surely relevant too, however. $A \ A_m$ is about what remains of the subject matter of A when it is forced to treat m-equivalent worlds alike.

\(^{11}\)This by a proportionality requirement elaborated in chapter 4.
HOW TO READ THIS BOOK

Which of A’s falsemakers are they? The ones that force A_m to be false, of course. A_\uparrow forces A_m to be false. A_m is false where it is not true, that is, where A fails to be true about m. A_m’s falsemakers thus emerge as those of A’s falsemakers—those of the A_\uparrow’s—which, in addition to not allowing A to be true outright, do not allow it to be true about m. Plugging in the definition of truth about m, they are those of A’s falsemakers containing no worlds m-equivalent to an A-world.

This completes our construction of the subject matter of A_m, and hence of the part of A that concerns m. Once again, A_\uparrow and A_\downarrow are to be understood as ranging over A’s truthmakers and falsemakers.

19 The part of A about m is the directed proposition that\(^{12}\)

1. is true where A is true about m
2. has, for each A_\uparrow, a truthmaker holding wherever A_\uparrow is true about m
3. is false where A is not true about m
4. has A_\downarrow as a falsemaker iff A_\downarrow is not true about m

Take again $D = \text{The } \# \text{ of atoms never changes}$. The part of D that concerns concreta is the proposition that is true in worlds with equally many atoms at all times, in virtue of facts like these: There are never any atoms; There is always a single atom; There is always a pair of atoms, ... ; and false in worlds whose atoms become more or less plentiful, because of facts like these: There were no atoms, and then one appeared; There was one atom, and then there were none; There was one atom, and then there were two....

3.5 SUMMING UP

Parts are subject to a principle of upward difference transmission: varying them makes for variation in their containing wholes. The principle is schematic; different differences are passed along according to the sort of entity involved. If x and y are material objects, intrinsic variation in x makes for intrinsic variation in y. If they are properties, it is changes in how they’re exemplified that percolate up. If they’re statements, it is variation in how they’re true. This provides a second route to our conception of content-parts as consequences whose ways of being true change less quickly. Sometimes A and B are given, and then we can apply the definition directly. Other times...

\(^{12}\)I am fudging here the same thing that was fudged in section 2.4. The definition purports to deliver, for any A and m, a thing called the part of A about m. But it is doubtful that A always has a part about m, for reasons given in that earlier section. The definition does always give us something with the right formal properties. But it may not be an honest to God directed proposition. For $|A_\uparrow|/m$ may not be a way for a sentence with $|A|/m$ for its truth-conditions to be true. What we are really getting is a thing that, if its “truthmakers” are rightly so called, is the part of A about m. I am going to treat this as understood.
only A is given, and our task is to construct the part of A that concerns the given subject matter.
Chapter Four

A Semantic Conception of Truthmaking

4.1 ARISTOTLE, TARSKI, ARMSTRONG, ...

I have been speaking of ways of being true, and sometimes of reasons for truth. The usual term, which I’ll use too, is truthmakers. I will not be trying to tell you “what truthmakers are,” because I do not really care; it is only their behavior that matters. I allow sentences to be truthmakers. I allow truthmakers that are defined only in particular regions of logical space. I allow truthmaker-makers—reasons, not for A to be true, but for something to be in a position to make it true. I allow truthmakers for truthmakers. The idea is to present some options, and provide some tools. Truthmakers are as truthmakers do, and they do all kinds of things.

I cannot leave the interpretation of “truthmaker” entirely to your imagination, however. Gerry Cohen is supposed to have said, in some tight argumentative corner: “I would like at this point to make a distinction. But I can’t think of one.” I am in roughly the opposite position. I would like not to make a distinction. Truthmaking is a can of worms that I would rather not have to open. Unfortunately, I can think of one. So the can will have to be opened, just a bit.

The distinction I am after is like one that Tarski makes in “The Semantic Conception of Truth” (Tarski [1944]). To conceive truth semantically, Tarski says, is to seek an understanding whereby it can play a foundational role in semantics. He contrasts this with

the classical Aristotelian conception of truth—which find[s] expression in the well-known words of Aristotle’s Metaphysics: To say of what is that it is not, or of what is not that it is, is false, while to say of what is that it is, or of what is not that it is not, is true. If we wished to adapt ourselves to modern philosophical terminology, we could perhaps express this conception by means of the familiar formula: The truth of a sentence consists in its agreement with (or correspondence to) reality (342-3).

The classical conception is metaphysical. Correspondence is a theory of the nature of truth, in the same game as the coherence theory, the identity theory of truth, pragmatism, minimalism, and so on. Tarski would like if possible to “do justice to the intuitions which adhere to the classical conception,” as he develops his preferred alternative.
Consider the sentence “snow is white.” ...if we base ourselves on the classical conception of truth, we shall say that the sentence is true if snow is white, and that it is false if snow is not white. Thus, if the definition of truth is to conform to our conception, it must imply the following equivalence: The sentence “snow is white” is true if, and only if, snow is white (343).

Truthmaking, like truth, has usually been conceived in metaphysical terms. The Aristotle of truthmakers is David Armstrong:

> The idea of a truthmaker for a particular truth is...just some existent, some portion of reality, in virtue of which that truth is true. The relation, I think, is a cross-categorial one, one term being an entity or entities in the world, the other being a truth ...The ‘making’ here is not the causal sense of ’making,’...the relation is necessitation, absolute necessitation...(Armstrong [2004], 5)

Truthmaking is depicted here as a

\[(m_1)\] a vertical relation,
\[(m_2)\] between “entities in the world” \(\tau\) and truths \(\varphi\), whereby
\[(m_3)\] \(\varphi\)’s truth is metaphysically necessitated by the existence of \(\tau\).

The metaphysical conception is defined by these three conditions. It obviously will not do for our purposes. We come to truthmakers by way of subject matter, a notion more at home in semantics than metaphysics. Semantic truthmaking is, or can be, a horizontal relation between facts and truths (a fine distinction!), which holds if the world is \(\varphi\) by being \(\tau\). Let’s leave the generalities for later, though. Now is the time for wind-tunnel models of the relation. I will be suggesting two.

4.2 RECURSIVE TRUTHMAKERS

Tarski gave us the semantic conception of truth. Might there be room in his system also for truthmakers? Davidson considers this question in “True to the Facts” (Davidson [1969]). He believes there is not only room for truthmakers in Tarski, they are in some sense already there. He defines truth, recall, in terms of satisfaction. Sentences are true because of what they are true of: certain sequences of objects. Sequences are what facts become in Tarski’s system. Satisfaction is all that remains of correspondence. Davidson’s idea here is puzzling, for truths are satisfied by all sequences. They do differ, though, Davidson observes, in how they come by this property.

> [T]ruth is reached, in the semantic approach, by different routes for different sentences. All true sentences end up in the same
place, but there are different stories about how they got there; a semantic theory of truth tells the story for a particular sentence by running through the steps of the recursive account of satisfaction appropriate to the sentence. (Davidson [1969], 7).

Something made everything is true because *x made everything* is satisfied by at least one sequence σ; it is satisfied by σ because *x made y* is satisfied by all sequences σ′ that agree with σ except possibly on y. Other truths will have their own derivational history.

The problem is not entirely solved, however, for distinct truths may agree too in their derivational history. Take for instance two universal generalizations, ∀xFx and ∀xGx, understood both to be true, and where the predicates are atomic. Fx and Gx are both satisfied by all sequences, and there is no more to the story than that. This is the wrong result; true generalizations are not all true for the same reason. The idea that suggests itself is to

include in the entity to which a true sentence corresponds not only the objects the sentence is “about” ... but also whatever it is that the sentence says about them (7).

The urge is understandable, but in Davidson’s view confused. Scrambling the objects S is “about” need have no effect on its truth-conditions, provided compensating changes are made in what it is understood to say about them (this was briefly discussed in section (1.4)). The fact making S true is responsible only to S’s truth-conditions, however, in his view; if they are unchanged, so is the “entity to which S corresponds.” But then the entity does not include, or reflect, the things S is about, or what it says about them.

This cuts no ice against a view like ours, as our truthmakers are precisely not responsible only to truth-conditions. They are meant to capture an aspect of meaning that goes beyond truth-conditions. Of course, it is one thing to rebut an objection to Tarski-style truthmakers, another to say what in a Tarskian setting truthmakers would be. Bas van Fraassen makes a proposal about this in the same volume of *Journal of Philosophy* as Davidson’s paper (Van Fraassen [1969]).

He begins where Tarski does, with an interpreted first-order language L. Rab corresponds to the fact that a bears R to b; ¬Rab corresponds to a’s bearing R to b; a conjunction corresponds to the combined truthmakers of its conjuncts; universal generalizations correspond to the product of truthmakers for their instances; and so on.

Some of these complexities are best left for later. Let’s focus on the propositional sub-language obtained by suppressing quantifiers and putting sentence letters for atomic predications Rab. Each p has associated with it a

1 *Everything ages*, supposing that it is true, has a different truthmaker from *Everything is self-identical*, etc.
positive atomic fact \{p\}, and a negative atomic fact \{\overline{p}\}. It doesn’t matter what \(p\) and \(\overline{p}\) “really are,” metaphysically speaking. One could think of \(p\) (\(\overline{p}\)) as the set of valuations verifying \(p\) (falsifying it), or the ordered pair \langle p, t \rangle (\langle p, f \rangle), or indeed as the sentence \(p\) (\(\neg p\)) itself. What matters is how the truthmakers of complex sentences bubble up from their components.

20 \(\tau\) is a recursive truthmaker/falsemaker for \(\varphi\) iff

1. \(\varphi\) is an atomic sentence \(p\) and
 - (t) \(\tau = \{p\}\)
 - (f) \(\tau = \{\overline{p}\}\)
2. \(\varphi\) is \(\neg \psi\) and
 - (t) \(\tau\) makes \(\psi\) false
 - (f) \(\tau\) makes \(\psi\) true
3. \(\varphi\) is \(\psi \lor \chi\) and
 - (t) either \(\tau\) makes \(\psi\) true or it makes \(\chi\) true
 - (f) \(\tau\) is the union of falsemakers for \(\psi\) and \(\chi\)
4. \(\varphi\) is \(\psi \land \chi\) and
 - (t) \(\tau\) is the union of truthmakers for \(\psi\) and \(\chi\)
 - (f) either \(\tau\) is a makes \(\psi\) false or it makes \(\chi\) false

Davidson’s idea that truthmakers ought to supervene on truth-conditions is obviously not respected here. \(p \lor \neg p\) has \\{\(p\)\} and \\{\(\overline{p}\)\} for its truthmakers, while \(q \lor \neg q\) is made true by \\{\(q\)\} and by \\{\(\overline{q}\)\}. If \(p \land \neg p\) were to be true, that would be because of the fact that \\{\(p\), \(\overline{p}\)\}. A different fact, \\{\(q\), \(\overline{q}\)\}, makes, or would make, \(q \land \neg q\) true. (It’s because these facts can’t obtain that the sentences can’t be true.) It’s the same with “contingent” claims like \(p \lor (p \land q)\) and \(p \land (q \lor \neg q)\): the first is made true by \\{\(p\)\} but not \\{\(p\), \(\overline{q}\)\}, the second by \\{\(p\), \(\overline{q}\)\} but not \\{\(p\)\}, though both are true just when \(p\) is true.

Now, van Fraassen is interested in truthmakers, not for their own sake, but for the account they enable of “tautological entailment” (Anderson and Belnap [1962]), a kind of relevant entailment.

21 \(\varphi\) tautologically entails \(\psi\) iff
 - each of \(\varphi\)’s truthmakers contains (as a subset) a truthmaker for \(\psi\).

2This is for clutter avoidance. Everything goes through the same if atomic sentences have multiple and/or complex truthmakers.

3So, for instance, \(p \lor q\) is made true by \\{\(p\)\} and by \\{\(q\)\}, and false by \\{\(\overline{p}\), \(\overline{q}\)\}, while \(p \land q\) is made false by \\{\(\overline{p}\)\} and by \\{\(\overline{q}\)\}, and true by \\{\(p\), \(q\)\}.
This is interesting but also a bit confusing, because we too use truthmakers to define a type of relevant entailment—the entailment of part by whole—and tautological entailment too is supposed to satisfy the “dogma that for φ to entail ψ, ψ must be “contained” in φ” (12). So, for instance, $p \& \neg p$ tautologically entails p but not q, since $\{q\}$ is not a subset of $\{p, \overline{p}\}$. Which is what the dogma leads us to expect: q is not “already there” in $p \& \neg p$, the way that p appears to be already there.

Do we have in tautological entailment a bona fide inclusion relation? I would say not. A paradigm of non-inclusive entailment, for us, is $p \Rightarrow p \lor q$, and yet $p \lor q$ is tautologically entailed by p. Anderson and Belnap are aware of this; they grant that containment can be understood so that $p \lor q$ is not contained in p. The problem can be addressed simply by flipping the quantifiers in the definition just given:

22 φ inclusively entails ψ iff

1. each of φ’s truthmakers contains (as a subset) one for ψ, and
2. each of ψ’s truthmakers is contained in a truthmaker for φ.

For $p \lor q$ to be inclusively entailed by p, its truthmakers, $\{p\}$ and $\{q\}$, would need to each contain a truthmaker for p, which $\{q\}$ clearly does not. Nor does p entail $p \& (q' \lor \neg q)$ inclusively, or $p \lor (p \& q)$, though each is logically equivalent to p. Inclusive entailment is a pretty demanding business.

4.3 REDUCTIVE TRUTHMAKERS

In an ideal language, simple sentences would be true for simple reasons, and complex sentences for complex reasons. In English, simple sentences can be true for complex reasons. The recursive approach allows this, but offers no guidance as to what those reasons might be. The recursive approach is thus incomplete; it needs to be supplemented with principles determining the truthmakers of simple sentences. Then too, complex sentences can be true for simple reasons, not guessable from their logical form. The recursive approach does not even allow this. It is “over-complete,” then, or unduly restrictive. I will focus in this section on the restrictiveness problem, but our results will be relevant to both.
A disjunction is true, according to (20), because of a fact that verifies one disjunct, or a fact that verifies the other. This does not seem to exhaust the options. Why not a fact that ensures that one disjunct or the other is true, without taking sides? That mares eat oats ensures, for instance, the truth in one way or another of \textit{Mares eat oats or does eat oats, or mares eat oats and does do not eat oats}. That everyone with the possible exception of Sandy is at the reservoir ensures the truth, in one way or another, of \textit{Either Sandy is not at the reservoir, or everyone is at the reservoir.}

Consider next a conditional \(p \& q \rightarrow p \& q \& r\). It owes its truth, on the recursive conception, either to a fact that falsifies \(p\), or a fact that falsifies \(q\), or a fact that verifies \(p \& q \& r\). Why not a fact that blocks the combination of \(p \& q\) true, \(p \& q \& r\) false, without pronouncing on the components taken separately? \textit{If you two are ready, that makes three of us} is true, it would seem, if and because I am ready. The only recursive truthmaker in the neighborhood is the fact that we’re all ready. That we are all ready seems like overkill, when my readiness suffices.

I do not say that unneeded extra detail is always disqualifying. Maybe my readiness sometimes should be supplemented with yours, in a truthmaker for the conditional. Maybe my readiness always can be supplemented with yours, in a truthmaker for the conditional. All I am balking at is the idea that my readiness always must be supplemented with facts about you. It is one thing to tolerate unneeded extras, another to insist on them. It’s the insistence that bothers me.

Suppose that \(\{r\}\) is rejected as a truthmaker for \(p \& q \rightarrow p \& q \& r\), while \(\{p,q,r\}\) is retained. The sentence will then be true for completely different reasons in \(p \& q \& r\)-worlds and \(\neg p \& \neg q \& \neg r\)-worlds. The fact that \(r\) does not count as a shared reason, though it holds in both worlds and determines the result in both. Again, \textit{politician}(x) \rightarrow \textit{woman-politician}(x) holds of Angela Merkel because she satisfies the consequent, and of Angelina Jolie because she falsifies the antecedent. There is also surely a reason they have in common, though: both are women. This is what the recursive approach is missing.

The quick and easy solution is to let truthmakers for \(\psi\) count also as making \(\phi\) true, when \(\psi\) is logically equivalent to \(\phi\). \(\psi\) in the present instance would be \(p \& q \rightarrow r\). It’s a two-way street, however; \(\{p,q,r\}\) now becomes (?!?) a truthmaker for \(p\), by virtue of making \(p \& q \& r) \lor (p \& \neg (q \& r)) \) true. One could tighten the rule so that \(\phi\) does not inherit those of \(\psi\)’s truthmakers that are stronger than needed to ensure truth. But \(\psi\) in that case drops out as irrelevant; we can apply the non-excessiveness requirement directly to truthmakers for \(\phi\).

Non-excessive truthmakers were studied long ago by Quine, as part of a project on squeezing redundancy out of truth-functional representations (Quine [1955]). Negated and unnegated sentence-letters are \textit{basic} sentences; a conjunction of basic sentences primely implies \(\phi\) if it implies \(\phi\), and its proper sub-conjunctions do not; \(\phi\) is represented as the disjunction of its
Prime implicants correspond in an obvious way to minimal models—partial valuations of the language that verify \(\varphi \) and none of whose proper subvaluations verify \(\varphi \). Minimal models can be construed, if we like, as van Fraassen-style facts: \(\{p, \overline{q}\} \) is the valuation that assigns truth to \(p \) and falsity to \(q \).

23 \(\varphi \)'s reductive truthmakers (falsemakers) are its minimal models (countermodels), or the associated facts.

Reductive truthmaking is both-ways independent of recursive, note: \(p \rightarrow (p \& q) \) is recursively verified by \(\{p, q\} \) but not \(\{q\} \), and reductively verified by \(\{q\} \) but not \(\{p, q\} \).

4.4 QUANTIFIERS, ETC

Two pictures of semantic truthmaking have been sketched: the recursive, and the reductive. I call them pictures, rather than theories, for a bunch of reasons. They are defined only for the simplest sort of artificial language. They don’t always “scale up” so well to richer languages. Neither gives a full account even of simple languages, since nothing useful is said about atomic sentences. Worse yet, they are apt to come into conflict.

Where does this leave us? The models represent tendencies in truth-maker assignment that pull at times in different directions. Reductive truthmaking is, in a propositional setting, intensional, since truth-table equivalents—

(a) \(p \),

(b) \(p \lor (p \& q) \), and

(c) \(p \& (q \lor \neg q) \),

for instance—hold in the same valuations; all of the sentences have \(\{p\} \) as their sole minimal truthmaker. Recursive truthmaking is hyperintensional:

(i) \(p \) has one truthmaker: \(\{p\} \),

(ii) \(p \lor (p \& q) \) has two: \(\{p\} \) and \(\{p, q\} \), and

(iii) \(p \& (q \lor \neg q) \) has three: \(\{p\} \), \(\{p, q\} \), and \(\{p, \overline{q}\} \)

The recursive approach succeeds in distinguishing these sentences only by countenancing truthmakers like \(\{p, q\} \) and \(\{p, \overline{q}\} \) that are stronger than needed to ensure their truth.

7The method Quine devised for identifying prime implicants is still used today. (The Quine-McCluskey algorithm, it’s called).

8What would a minimal truthmaker be for *Infinitely many objects exist* or *Everest is over four miles high*?

9To assign a single dedicated \(p \) to each \(p \) only evades the issue.
Hyperintensionality and minimality may seem intrinsically at odds, but this turns out not to be so. Some degree of rapprochement is possible in, to take the obvious next step, quantificational languages. The following are truth-conditionally equivalent:

(a) No frogs are ungulates
(b) No ungulates are frogs
(c) Nothing is both a frog and an ungulate

The candidate truthmakers, intuitively speaking, are

(i) a certain bunch of things—the Fs—are none of them Gs
(ii) a certain bunch of things—the Gs—are none of them Fs
(iii) a certain bunch of things—all of them—are not F-and-G

Each of (i)-(iii) guarantees the truth of each of (a)-(c). Are the truthmaking relations similarly indiscriminate? Surely not; (i) goes with (a), (ii) with (b), and (iii) with (c). Adding new frogs to a world affects how it is true that no frogs are ungulates. Adding new horses does not. What the new horses bear on is how it is true that no ungulates are frogs. How to rationalize it, I am not sure, but the judgment is clearly there.\footnote{Nor is it just a syntactic reflex, triggered by the “frog”-term in subject position; for it follows the topic of conversation, not the subject term, when the two come apart. (“Let me tell you about the ungulates. No frogs are ungulates. Check the ungulates in this room, for instance; you’ll find that none of them are frogs.”)} There is no conflict with minimality in this, for (i)-(iii) are all minimal. None is puffed up with irrelevant extras. If structure can be respected at no cost to minimality, that is surely the way to go.

I make the point with \(\text{No Fs are Gs} \) because the “restrictor” clause in a binary generalization is widely agreed to function differently from the “scope.” The notation \(\forall x (Fx \to \neg Gx) \) is in this respect less misleading. A similar point holds, however, for unary quantifiers. Take “Nothing Even Matters,” which you may recognize as the title of a Lauryn Hill song. Let’s assume the title is true: Hugo Chavez doesn’t matter, the wide Sargasso Sea doesn’t matter, Jupiter’s moons do not matter, and so on. That various particular things do not matter has a role to play, obviously, in how it is true that nothing matters. There are things, indeed, such that their not mattering is the way it is true that nothing matters. I am speaking, of course, of all the things. To be sure, they have this power only because they are everything. Their not mattering ensures the generalization’s truth only given the totality fact. But what does this mean, exactly? How does the totality fact contribute? It is usually slotted into the truthmaker, alongside the instances.

\(\forall x Fx \) is made true, not simply by \(F_a, F_b, F_c, \) etc, but by them \textit{combined} with the fact that \(a, b, c, \ldots \text{ are everything} \)
This seems, however, to confuse the issue of what the truthmaker is, from how it acquires that status. (Analogy from the causation literature: Suppose you duck to avoid a bullet. The ducking explains your survival; that explanatory relation is explained in turn by the bullet. But the bullet is no part of why you survived.) Better would be

\[\forall x \text{ } Fx \text{ is made true simply by } Fa, Fb, Fc, \text{ etc.; they suffice for this purpose because } a, b, c, \ldots \text{ are everything.} \]

Keeping the totality fact—the fact that \(a, b, c, \ldots \text{ are everything} \) out of the truthmaker (putting it into the truthmaker-maker, as it were) is tempting in much the way that we are tempted to think of \(\text{No frogs are ungulates} \) as true simply because certain things, viz. the frogs, are not ungulates; that these things are the frogs explains how they do it, which puts it into the truthmaker-maker.

This sacrifices, however, a defining feature of truthmakers: they should force the truth-bearer to be true. One could retreat to the weaker claim that \(S \) is forced to be true by its truthmaker and \emph{whatever further facts confer on it that status}. But, although that may be right in the end, it’s too big a job to be taking on now. Let me propose instead a simple expedient. \(\forall x \text{ } Fx \) is necessitated, and made true, by \(Fa, Fb, Fc, \ldots \) “qua complete list of instances,” or “insofar as \(a, b, \ldots \text{ are everything,” or simply “qua everything.”

\[\text{Fa, Fb, \ldots qua everything is like the fact that } Fa \& Fb \& \ldots \text{, except for being undefined—rather than failing— in worlds whose population extends beyond } a, b, \ldots \]

This turns the totality fact into something akin to a presupposition. \(Fa, Fb, \ldots \text{qua everything} \) incorporates the fact that \(a \text{ is } F \), because it fails if \(Fa \) does. It does not incorporate the totality fact, for it does not fail (it is guaranteed \emph{not} to fail) in worlds with objects other than \(a, b, \ldots \)

One fact \emph{turns on} another, let us say, if the second must obtain for the first to obtain, and also for the first to fail. That Jupiter is bigger than Venus turns on the two planets’ existing. That certain things, qua everything, have a certain feature, likewise turns on their being all the things that there are. A fact’s truthmaking powers depends not only on where it obtains, but what it turns on. Suppose with Goodman that \emph{Everything ages}. Why is this true? It owes its truth to an exhaustive group’s aging, not an aging group being exhaustive.

Some notation from the presupposition literature is helpful here: \(P \& \partial Q \) takes its truth-value from \(P \) when \(Q \) is true, but is undefined when \(Q \) is false. \(P \& \partial Q \) will be likewise be a fact that obtains (fails) just if \(P \) does, in worlds where \(Q \) obtains, but is undefined, rather than failing, in worlds where \(Q \) fails. The proposal, writing \(T \) for the totality fact, and \(k \) for an arbitrary non-\(F \), is this:

\[\forall x Fx \text{ is made true by } Fa \& Fb \& \ldots \& \partial T \]
∀xFx is made false by Fk11

Note, P&Q implies whatever P&Q does, as they obtain in the same worlds. ∀xFx was necessitated by Fa & Fb &....& T—its instances plus the fact of their exhaustiveness—so it is necessitated by Fa & Fb &...&dT— the instances assumed to be exhaustive.

4.5 A NEW CONDITIONAL

All ravens are black owes its truth to what goes on with the ravens. That a raven-shaped white thing turns out to be a plaster model may be evidentially relevant, but it’s nothing to do with how or why the generalization is true. This is a very familiar point, going back at least to Belnap [1970].

Almost everyone, I suppose, has considered from time to time that “All ravens are black” might profitably be read ... as saying not that being a raven implies being black [∀x(Rx→Bx)], but rather something more like “Consider the ravens: each one is black” (Belnap [1970], 7)

Belnap tries to achieve this result with a device of conditional assertion.
(Q/P) represents the assertion of P, conditional on the truth of Q

If Q is true, then what (Q/P) asserts is what P asserts.
If Q is false, then (Q/P) is nonassertive (Belnap [1970], 3)

Committing to (Rx/Bx) is asserting (but only if x is a raven) that x is black.12 This seems like a step in the right direction, but a large step, and somewhat into the unknown.13 How to quantify into regular conditionals we know, but how does one quantify into a conditional speech act? A story will be needed about embedded conditionals, such as If we have ham, then if we have eggs, we have ham and eggs. Does this condition a conditional speech act on our having ham? Contraposition is threatened: asserting Q, conditional on P, seems like a different undertaking from asserting ¬P, conditional on ¬Q; certainly the one does not commit us to the other. (Q/P) looks to be independent of (¬P/¬Q). But, calling something black if a raven would seem to commit me to its not being a non-black raven. That puts at least some pressure on me to assert that it’s not a raven, supposing it not to be black.

A de-pragmaticized analogue of Belnap’s conditional avoids these problems. I write it Q↗/\biglandP. Where (Q/P) asserts that P, should Q be true, and

11Fa and Fk stand in here for whatever it is that makes Fa true and Fk false, which doesn’t necessarily involve F. ∀xRed(x) might be true because of Scarlet(a), Crimson(b),.... or false on account of Green(k).

12Compare a conditional bet: if Gonzaga makes it to the Final Four, I bet they take the whole thing. It’s as though I hadn’t spoken, if they don’t.

13Stalnaker [2004] is a good recent discussion.
is otherwise non-assertive, the new conditional—Q supposing that P—takes on P’s truth-value and subject matter, should Q be true, and is otherwise non-substantive.

26 If Q is true, then $Q \supset P$ is true (false) for the same reason(s) as P.
If Q is false, $Q \supset P$ is vacuously true—true without benefit of truthmaker.

The word “vacuous” is meant to call vacuous generalizations to mind. A statement like All perpetual motion machines are in Kazakhstan is true, not because its demands are met, but because it does not make any demands. This is why the standard reading feels wrong; $\forall x (\text{PPM}(x) \rightarrow KAZ(x))$ is true for the highly non-trivial reason that perpetual motion machines don’t exist. $\forall x (\text{PPM}(x) \supset KAZ(x))$ is true for no reason; the reason for that is that that perpetual motion machines don’t exist.

The “suppose” conditional \supset requires no departure from standard practice; it is truth-conditionally identical to the material conditional. Rudy is a raven \supset Rudy is black is, like its material counterpart, true when Rudy is black or not a raven, and otherwise false. Only the reasons differ. One is true either because Rudy is not a raven, or because Rudy is black. The other is true, should Rudy be a raven, because Rudy is black, and otherwise for no reason at all. There is again a level-distinction at work here. Reasons for a statement to be true are one thing; reasons why it doesn’t need a reason to be true are another.

From here on we follow Belnap. All ravens are black is syntactically speaking an unrestrictedly quantified conditional. The traditional syntax notwithstanding, it winds up with a binary, restricted quantifier type of meaning. If a, b, c,... are w’s ravens, then $\forall x \ (Rx \supset Bx)$ is

\[
\begin{cases}
\text{true in } w \text{ if and because each of } a, b, c,... \text{ is black in } w \\
\text{false in } w \text{ if and because one of } a, b, c,... \text{ is not black in } w
\end{cases}
\]

Let me indicate how one gets this result, given what was said about unary quantifiers and the “suppose” conditional.

$\forall x (Rx \supset Bx)$ is true in w when, and because, certain things (psst, w’s inhabitants) are raven/\supset black in w (by 25). These things, w’s inhabitants), divide into w’s non-ravens an its ravens. Its non-ravens are raven/\supset black for no reason (by 26). Its ravens (a, b, c,...) are raven/\supset black by being black (by 26). The two together, then, are raven/\supset black because (a, b, c,...) are black.

That gets us the first line of 27: $\forall x (Rx \supset Bx)$ is true when and because, as for the ravens, they are black. Now the second. Universal generalizations are false when and because an instance—something of the form $Rk \supset Bk$—is false (by 25). $Rk \supset Bk$ is capable of falsity only if k is a raven; its reason for being false is that k is not black. As it says on the second line of 27, then, $\forall x (Rx \supset Bx)$ is false because a certain thing k, assumed to be a raven, is not black.
4.6 TRADEOFFS

Recursion and reduction are natural, sometimes opposing, tendencies in the assignment of truthmakers. Both have much to be said for them. If one can be honored without disrespecting the other, that is the way to go. Otherwise we need to think think instrumentally. The recursive approach takes the lead in some applications, the reductive in others. Sometimes a compromise has to be struck. Let me run quickly through a few problem areas to illustrate the possibilities: logical omniscience, scalar implicature, confirmation, partial truth, and logical subtraction.

If two statements—\(p \land (q \supset p) \) and \(\neg(p \rightarrow q) \lor (p \land q) \), say—carve out the same region of logical space, how can the thinker fail to notice this? A region is not so easily reidentified, when plotted in a different coordinate system, or marked out on a different logical grid. The grid is set by the subject matter, which groups worlds on the basis of how a statement is true. \(p \land (q \supset p) \) and \(\neg(p \rightarrow q) \lor (p \land q) \) need to differ in their truthmakers, for this sort of explanation to work. Their reductive truthmakers are the same—both are true because of \{p\}—so it is recursive truthmakers we need for this application.\(^{14}\)

"I’ll bring cake or pie," you say, thereby indicating that you will not bring cake and pie. The implicature vanishes if you say, what is logically equivalent to bringing cake or pie, that you will bring cake or pie or both. Why does \(p \lor q \lor (p \land q) \) implicate less than \(p \lor q \)? Because it "says more," in the sense not of ruling out additional worlds, but bringing in additional truthmakers.\(^{15}\)

For \(A \) to implicate \(\neg K \), it is not enough that \(K \) be a salient, stronger alternative to \(A \). \(K \) should be stronger also than \(A \)'s truthmakers.\(^{16}\) Again, it is the recursive approach that posits a new truthmaker for each new disjunct, however truth-conditionally irrelevant.

If the issue is probability, recursive truthmakers cut too fine. Statements true in the same worlds are going to be equally likely, since probability is a measure on sets of worlds. Insofar as confirmation is a probabilistic notion, confirmation theory ought, you might think, to eschew recursive truthmakers too. But this is not so clear. What is the point of Hempel’s paradox, if not to bring out confirmational differences between hypotheses true in the same worlds? The recursive approach helps us to make sense of this, by putting the truth-value of contrapositives (All ravens are black, All non-black things are non-ravens) under the control of different facts. The explanation is admittedly not terribly discerning, since All ravens are black differs in its recursive truthmakers from all kinds of hypotheses, including some, like All

\(^{14}\)Recursive truthmakers track sentential structure only so far. \(\neg \neg A \) has the same truthmakers as \(A \), and \(A \land B \) the same as \(B \land A \). (This echoes Frege on the sense-preserviveness of double negation. Whether reversing conjuncts can affect sense for Frege, I don’t know.)

\(^{15}\)I get the example from Kit Fine, but he may deal with it differently.

\(^{16}\)In further support of this, \(p \lor q \) does not implicate \(\neg p \) or \(\neg q \). (A good thing, or its implicatures would refute it.) See, among many other papers, Geurts [2009]. Thanks here to Danny Fox.
ravens are black ravens, from which it is confirmationally indistinguishable. The explanation is also puzzling; if a black raven is evidence for All ravens are black and not its contrapositive, it ought to drive their probabilities apart, which by hypothesis it doesn’t. More on this later. The point for now is that we need sometimes to have a foot in both camps.

A falsehood does not get to be partly true just by having among its consequences some that are true. Otherwise every \(p \) is partly true, by virtue of implying \(p \lor q \); \(q \) can be any truth that you like. Only certain consequences reflect favorably back on a falsehood, viz. the truths contained in it. This, one of the key motivations for content-part, is largely undone if truth-makers are conceived recursively. For \(p \lor q \) is part of, if not \(p \), something equivalent to \(p \), viz. \(p \lor pq \). To suppose that every falsehood is equivalent to a partial truth is only slightly less outrageous than the idea that every falsehood is itself partly true. The reductive model is preferable when we are assessing statements for partial truth.

A tempting approach to logical subtraction says that \(A-B \) is true in worlds where \(B \rightarrow A \) is true “not because \(B \) is false,” that is, where \(B \rightarrow A \) is true for a \(B \)-compatible reason or in a \(B \)-compatible way. So, for instance, the truth of \(p \rightarrow (\text{emp} \land p \lor q) \) is ensured both by \(p \)'s falsity or \(q \)'s truth. The first guarantor is not \(p \)-compatible, so we are left with the second: \(p \land q \rightarrow p \) is true in the same worlds as \(q \). The recursive model doesn’t recognize the fact that \(q \) as a truthmaker for \(p \rightarrow (\text{emp} \land p \lor q) (= \neg p \lor (\text{emp} \land p \lor q)) \), however. A disjunction’s truthmakers are inherited from its disjuncts taken separately; synergistic relations, if any, between them are ignored. Subtraction lives off these relations; subtractive truthmakers had thus better be minimal truthmakers.

I wish I had more to say about how the two models interact. One obvious thought is that sentential structure creates a presumption in favor of certain truthmakers. Some Fs are G is true, normally, because the Fs are some of them G. But presumptions can be defeated. The poisonous ones don’t look like that, you say, as a snake family approaches. Some of them do too look like that, the ranger tells you. She is not saying of poisonous snakes in general that some of them look like these here; she is saying of these snakes here that they might for all we know be poisonous. Again, biconditionals are true, normally, either because both sides hold or because both sides fail. But not always. Why is it true that There are renates in Bosnia iff there are cordates there, and there are renates in my closet iff there are cordates there, and ? Is it because there are renates and cordates in Bosnia, there are no renates or cordates in my closet, and so on? This is what the recursive approach tells us. A better, anyway shorter, answer is that the renates are the cordates.

Alternatively there could be a presumption, also defeasible, in favor of “uncomplicated” truthmakers like the renates being the cordates. Suppose

17Thanks here to John Hawthorne and Frank Arntzenius.
18\(p \lor q \)'s truthmaker \{q\}, while not implied by any truthmaker for \(p \), is implied by \{p, q\}, which is (on the recursive model) a truthmaker for \(p \lor pq \).
that A implies B, so that A and $A \& B$ are equivalent. $A \& B$ could just take its A’s truth- and falsity-makers over from A, and should, given our presumption, if A’s are particularly simple. So, *Alice is not happy and someone is not happy* is true/false for the same reasons as *Alice is not happy*. The presumption is defeated if B raises tricky new issues, for instance if it has falsemakers that are not so easily ruled out as A’s falsemakers. *I am sitting by the fire and not a brain in a vat* could in principle be assigned the same falsemakers as *I am sitting by the fire*: I am standing, for instance, or lying down, or etc. This would be the least complicated option. But in practice we would throw in the B-relevant possibility that I am a brain in a vat. I will for the most part be assuming minimal truthmakers, or (see below) proportional ones, rather than recursive truthmakers. But, and this is important, structure will be respected where the assumption allows it, and the assumption is defeasible. One needs a reason to go non-minimal. But, one often has a reason.

4.7 TRUTHMAKERS IN CONTEXT

Truthmaking is a two-place relation; let’s think about the relata. We have τ, the maker, and ϕ, the beneficiary. What sort of entity is ϕ? If truthmakers were generated compositionally, as on the recursive model, the logical choice would be sentences. The recursive model is problematic, though, precisely because of its devotion to S and its structure tree. The sentence is important but so are focal stress, perceptual attention, shared agendas, and so on, I see no difference of principle here, and so prefer to treat S as one more feature of context, influential but not all-powerful.

Now, even if S functions as an element of context to steer us toward certain truthmakers, that doesn’t prevent it from being what they make true. There is precedent for such a view in Lewis’s theory of de re modal attribution. Consider *Goliath in Goliath could have been pear-shaped*. It contributes, Lewis thinks, in three ways: semantically, by supplying its referent; pragmatically, by raising a certain statue-ish counterpart relation to salience; and metaphysically, by helping to constitute the item that is up for evaluation.19 It could be the same with *No frogs are ungulates*. It contributes semantically, by way of the coarse-grained proposition it expresses; pragmatically, by raising certain truthmakers/falsemakers to salience; and metaphysically, as the item made true. I don’t object to this, but want to suggest another, more fundamental, candidate for the role. Making a sentence true is “really,” underlyingly, making the coarse-grained proposition true, in a context where the vehicle is that sentence; S in a given context gets its truthmakers from S, though the features of context whereby they are S’s truthmakers may include that the sentence employed was S. (If facts too

19Lewis [1971]. Crimmins and Perry have a similar idea except that it is modes of presentation that a name makes salient (Crimmins and Perry [1989]).
are conceived as sets of worlds, truthmaking becomes a horizontal relation, like implication or causation.)

I have been talking about “tendencies” in truthmaker assignment, but it is only in the context of truth-functional logic that the distinction is really clear. The advantage of the propositional setting is that precise, model-theoretic definitions are possible. But there are disadvantages too. Propositional languages are crude, and they let us off the hook in various ways, witness the lazy, mechanical treatment of atomic truthmakers as made in the image of atomic sentences. So, although model theory has served us well as a crutch, at some point we have to confront natural language in all its glory. I will for various reasons be using tools from the minimalist’s toolkit, rather than recursive tools. One is that it is easier; the recursive approach requires real linguistic competence. Also it is more adaptable. Minimal models are like compact guarantors of truth, which is a notion that travels well. If you are asked how it comes about that an emerald is grue, you will not answer (as you should, on the recursive model) that it is grue by being grue. An emerald is grue either by being examined and green, or unexamined and blue. A figure is polygonal by being rectangular, or triangular, or etc. Your understanding of the word tells you that it applies in different ways.

4.8 NECESSITATION

Now I want to point out some ways in which metaphysical truthmakers are unsuited to the role of semantic truthmaker.20 Metaphysical truthmaking, you recall, is a

\((m_1)\) a vertical relation,

\((m_2)\) between “entities in the world” \(\tau\) and truths \(\varphi\), whereby

\((m_3)\) \(\varphi\)’s truth is metaphysically necessitated by the existence of \(\tau\).

Semantic truthmaking, as I will be understanding it, is a

\((s_1)\) a horizontal—anyway not inherently vertical—relation

\((s_2)\) between “ways things can be” \(\tau\) and truths \(\varphi\), whereby

\((s_3)\) \(\varphi\) is logically necessitated—implied—and explained by \(\tau\).

Start with \((m_3)\). Armstrong asks \(\tau\) only to necessitate \(\varphi\); it needn’t tell us how \(\varphi\) is true, or why. This is a problem if truthmakers are to line up with subject matter. Suppose that \(\varphi\) is necessarily equivalent to \(\varphi’\). Then the same \(\tau\)s necessitate them, whence they agree in their Armstrongian truthmakers. Necessary equivalents may well not agree, however, in what

20I will be slighting the recursive aspects of semantic truthmaking, as already mentioned. Allowing them only strengthens the case.
they are about. *All ravens are black* describes the world’s ravens as black, while *All non-black things are non-ravens* says of the world’s non-black things that they are not ravens (4.4). Requiring τ to explain φ is meant to address this. *All ravens are black* is true because each of r_1, \ldots, r_j (the world’s ravens) is black. *All non-black things are non-ravens* is true because n_1, \ldots, n_k (the world’s non-black things) are not ravens.

Staying with (m_3), Armstrong holds that “the necessitation cannot be any form of entailment” (Armstrong [2004], 5).21 Entailment relations are judged from the armchair, whereas truthmaking (for “scientific realists” like Armstrong) is a matter for empirical inquiry. Given our project here, however, this consideration actually cuts the other way.

Imagine we are researching a hypothesis φ whose truthmakers are as yet unknown. To understand φ, you should appreciate what it’s about. Are we then forced to put first project on hold to examine the suggestions ψ that have been made about φ’s truthmakers. The same problem may arise with φ, and with our hypotheses χ about its truthmakers, and on down the line, so that we never manage to work out what we’ve talking about.22 Can it really be that new research projects are required to understand what was at issue in old ones? There may be some deep truth in the neighborhood of that idea, but it prima facie gets things backwards. You should first know what you’re asking about, before galloping off in search of the answer. Logical necessitation (implication) is a better choice for our purposes than metaphysical.

4.9 VERTICALITY

Truthmaking is a cross-categorial relation, according to (m_2). A truthmaker is an element of reality: an object, maybe, or trope, or event, or situation. A truth is a representation of reality: a sentence, one assumes, or proposition. There is no possibility, on this view, of truthmakers having truthmakers of their own. τ must be a “thing” to play the truthmaking role with respect to φ. It must be representation, to be made true in turn.

This is unfortunate from a subject-matter perspective, because it obliterates an important distinction: between what a sentence is directly about and what it is indirectly, or even ultimately, about. Truthmaker chains are needed to see the difference. Two sentences for illustration:

(A) Nobody has a married great aunt.

(B) Grandparents with sisters and in-laws have only sisters-in-law,
Sentence A concerns the family relations of one group of people, a group which includes me. It says that my great aunts, if any, are single. B is about the family relations of a different group, which does not include me. The family relations in A reach back several generations, while those in B are on the face of it intra-generational. My great aunt’s marital status figures in why A is false, but not B. My grandmother’s brother-in-law falsifies B more directly than A. (A and B are truth-conditionally equivalent, I hope.)

Ah, but I have an married great aunt partly because my grandmother Masha has a sister Judy. Judy being her sister is relevant also to how Masha wound up with a brother-in-law. We have two truthmaker chains with the same endpoint: Someone has a married great aunt because I do, which is owing to Judy’s relations to Max (her husband) and to Masha. Some grandparent has a brother-in-law in part because my grandmother does, which again is owing to Judy’s relations to Masha and Max.

This cannot work if truthmaking is cross-categorial. The middle term would have to be a world-element, to make Nobody has an married great aunt false, but also a world-representation, to be made true in part by Masha having a married sister. For claims with the same ultimate truthmakers to differ in subject matter is a puzzling phenomenon, that we need proximal truthmakers to explain.

A truth holds in w because of how matters stand there. How matters stand in w— that Sparky barks, for instance—is an aspect or property of w rather than a part of it. If we follow Lewis in identifying properties with their possible instances, then Sparky’s barking is the set of worlds where that is what Sparky does. The fact of Sparky’s barking is a truthmaker for the proposition that something barks. If, again following Lewis, that proposition too is a set of worlds, then truthmakers are thus of the same category as at least some of what they make true, viz. other propositions.

Again, Masha has a sister is true because of this fact: Judy is a sister to Masha. Both parties to this relation—the fact and the proposition—are sets of worlds. Semantic truthmaking is vertical insofar as Judy is a sister to Masha makes Masha has a sister true. It does that, though, by making the expressed proposition true. Semantic truthmaking is derivatively vertical, I’m suggesting, but at bottom horizontal.

4.10 EXPLAINING TRUTH

Look again at (s3): ϕ is necessitated and explained by τ. Can necessitators explain? Armstrong wonders about this himself. Truths hold “in virtue of” truthmakers, he says, which sounds explanatory. But there are passages like the following:

23Truthmaking is something like the dual of inclusion. A paradigm of inclusion is \(p \land q \geq p \). A paradigm of truthmaking is \(p \models p \lor q \). A paradigm of non-inclusion is \(p \not\geq p \lor q \), while a paradigm of non-truthmaking is \(p \not\models p \). Inclusion is horizontal, so truthmaking should be too.
Suppose p to be a truth and T to be a truthmaker for p. There may well exist, often there does exist, a T' that is contained by T, and a T'' that contains T, with T and T'' also truthmakers for p... The more embracing the truthmaker, the less discerning it is. For every truth, the least discerning of all truthmakers is the world itself, the totality of being. The world makes every truth true... (Armstrong [2004], 17-8.)

He does then go on to discuss p's “minimal truthmakers” as a special case, but without backing off the claim just stated: p holds true in virtue of arbitrarily inclusive p-necessitators. I find this puzzling. If T is sufficient for p's truth, doesn’t that cast doubt on the idea that p holds true in virtue of T-conjoined-with-U? Armstrong is surely right that “The ‘making’ here is not the causal sense of ‘making’ ” (Armstrong [2004], 5). But he wouldn’t have to say this, if there were not some sort of analogy. Truthmakers, like causes, should not be overladen with extra detail. (This relates to our idea above of truthmakers as minimal guarantors of truth.) Suppose I shout at my cat, telling it to get off the couch. What causes the cat to run off? My shouting, *Get off the couch*? No, it would have run whatever I had shouted. A better candidate for the role of cause is my (simply) shouting. Proportionality says that a cause should not involve irrelevant extras without which the effect would still have ensued. Causes are expected on the whole to be proportional to their effects (Yablo [1992], Yablo [2003]).

But of course, the shouting was not strictly required either; the cat would also have taken off, if I’d fired a gun at it. Is the cause my shouting-or-shooting-at the cat? This is where the second constraint comes in: naturalness, and especially non-disjunctiveness. My shouting-or-shooting-at the cat is just too disjunctive.

C is not a cause of E if you can improve it on the score of proportionality without making it much less natural. There is a similar tradeoff with truthmakers. They should on the one hand not incorporate irrelevant extras, in whose absence we’d still have a guarantee of truth. What makes it true that there are dogs? Proportionality favors the fact that Sparky is a dog over the fact that Sparky is a black and white cockapoo; the extra detail is unneeded. Now we switch to the other hand. Isn’t the fact that Sparky or Shadow is a dog still better, from a proportionality perspective?

It is better, from that perspective. But again, a candidate truthmaker is not disqualified by more proportional competitors if those competitors are much less natural. For τ to make φ true in world w is something in the neighborhood of τ being an explanatory φ-implier that obtains in w. And τ is not explanatory if it has competitors in w effecting a better tradeoff between naturalness and proportionality.\(^{24}\)

\(^{24}\)Truthmaking owes at least some of its hyperintensionality to the hyperintensionality of explanation. *Some Fs are Gs* has the same thin content as *Some Gs are Fs*. But this content will seem true for different reasons depending on which of the two sentential guises is salient. An event’s causal relations can similarly seem to depend on the “features we
4.11 SUMMING UP

Truth for Aristotle was a metaphysical notion. Tarski showed how to conceive truth semantically, that is, in such a way that it could play a foundational role in semantics. Armstrong, the Aristotle of truthmaking, conceives it metaphysically, as the a posteriori necessitation of truths by “things in the world.” We in a Tarskian spirit seek a semantic conception of truthmakers. Two formal models are suggested, the recursive and the reductive. They represent tendencies in truthmaker assignment that pull, at times, in different directions. Where one can be indulged at no cost to the other, as in the case of quantifiers, that is the way to go. Otherwise a compromise has to be struck. How the tendencies trade off depends on the application. Standing back from the details, semantic truthmakers are facts that imply truths and proportionally explain them.

hit on for describing [it]” (Davidson [1967]). My alerting the burglar is due in part to the burglar’s being there to be alerted. Not so my flipping the switch. My flipping the switch caused the light to come on, but my alerting the burglar didn’t; the light coming played a role in my alerting the burglar. The flipping and alerting are, according to Davidson, the same thin (coarse-grained) event.
Chapter Five

The Truth and Something But The Truth

5.1 WHY LIE?

Now that we know, more or less, what partial truth is, the question becomes: Why bother with it? Why make false statements with true bits, rather than just the true bits? William James opines in his debate with Clifford that:

a rule of thinking which would absolutely prevent me from acknowledging certain kinds of truth if those kinds of truth were really there, would be an irrational rule (?, 31-32).

This is usually heard, I assume rightly, as a plea for epistemic boldness. If “acknowledging certain truths” carries a risk of acknowledging the odd falsehood, well, that may be a price worth paying. But one can also hear it as a plea for semantic boldness. It might be that certain truths are not accessible except as scattered parts of larger falsehoods (or larger hypotheses that might for all we know be false).1 If access were limited in this way, then dallying with the larger falsehoods could be on balance a good policy. The difference with James is that it’s not the falsity of one statement tolerated for the sake of another’s truth, but the falsity of a statement tolerated for the sake of the truth of, or in, the very same statement—for the sake of the truth the false statement contains.2

This apology for partial truth is only as good as the premise that certain truths are only, or best, accessed as part of larger falsehoods. One sees how the premise could be true. The construction in section 3.4.2 of the part of A about m yielded a (potentially) true proposition, but not a sentence expressing it. The only sentence available is A, which we’re supposing is or may be false. One can specify the intended proposition and endorse it, but there is no obvious way to assert it.

What other option have we, in this situation, than to assert the sentence, or make as if to assert it? Our plea to the charge of misrepresentation is “guilty with an excuse.” Part of what we said was true; it’s not obvious how to assert just that part; and we did our best to clue you in to which part it was—it’s the part about such and such a subject matter.

1This way of putting it comes from Quine: “The conceptual scheme of physical objects is [likewise] a convenient myth, simpler than the literal truth and yet containing that literal truth as a scattered part” (?).

2A logic of partial truth is developed in Humberstone [2003].
So we see how there could be a Jamesian justification, or excuse, for speaking “the truth and something but the truth”—for what might be thought of as a kind of generalized hyperbole. It would be nice to have some actual examples, and I am not sure I do. Here, though, are some possible ones, which may or may not turn out on closer consideration to work. They are meant to illustrate a kind of approach not on the standard menu of options.\(^3\)

5.2 LOOSE TALK

I am 5 feet 9 inches tall. That is what I say, at any rate, when someone asks me my height, or if I have to enter it on a form. Being 5 foot 9 makes me the same height as Carla Sarkozy.

I say these things, but they are not true. I am closer to 5’ 8\(\frac{3}{4}\)’’ tall than to 5’ 9’’ tall, which makes me less than 5’ 9’’; you can’t be less than 5’ 9’’ tall and 5’ 9’’ tall at the same time. Similarly for being the same height as Carla Sarkozy. She is a bit over 5’ 9’’, which makes her taller than me rather than the same height.\(^4\)

These statements sound right, because they are true about height in inches, which is all we normally care about. Worlds are height in inches-equivalent when they agree, for all individuals I, in the number n of inches that is closest to I’s actual height. I am 5’ 9’’ is true about height in inches (see the definition in section 2.4) if it can be made true, period, by adjusting heights in a way that preserves the n in question. And it can, by “normalizing” everyone to their height in inches. This means topping off people like myself, who are slightly less than their height in inches, and cutting back people like Carla Sarkozy, who are slightly more. I am the same height as Carla Sarkozy is true in a normalized world as well. France is hexagonal is true about approximate shape, because it can be made true simpliciter while preserving the standard shapes closest to true shapes. You never take me to Friendly’s is true about what happens birthdays aside, because its truth simpliciter requires only a tweak in what happens on birthdays.

Why proceed in this roundabout fashion? I could have said that 5’ 9’’ is the height in inches closest to my height; that the number of inches closest to Carla Sarkozy’s height is the number of inches closest to mine; that hexagonal

\[^3\] Fictionalism, error theory, figuralism, deflationism, etc. I will not undertake a point by point comparison. But see the last few chapters.

\[^4\] Peter Lasersohn’s example: “Suppose I tell John that Mary arrived at 3 o’clock. If John finds out later that Mary didn’t arrive at 3 but at fifteen seconds after 3, it would be unreasonable of him to complain ‘You said she came at 3!’...[but] we have to concede that he is, strictly speaking, RIGHT; when I told him Mary arrived at 3, I said something that was literally false, not true” (Lasersohn [1999]). See also Sperber and Wilson: “Suppose Marie lives in Issy-les-Moulineaux, a block away from the city limits of Paris. At a party in London, she meets Peter. He asks her where she lives, and she answers: I live in Paris. Marie’s answer is literally false, but in ordinary circumstances it is not misleading.....Peter would be misled by Marie’s answer only if he were to conclude from it that she lives within the city limits of Paris rather than in a suburb” (Sperber and Wilson [1985]).
is the standard shape minimizing the area of non-overlap with France. But this way of talking is ugly and inconvenient. It requires explicitness about something that ought to be backgrounded—something off the main point and anyway perfectly well understood. Better to stick with the original statement and let the part presented as true track the issue under discussion.

That issue may change as the discussion proceeds. Deb is 6' 1\frac{1}{4}"?, you tell me. Why not call her 6' 1"? I assume because the simpler statement is false about the subject matter you mean to be addressing. It is false about height to the nearest quarter of an inch. I will not call myself 5'9" any longer, as this too is false about the subject matter now under discussion.

OK, but why can I not reshrink the issue as easily as you expanded it? Why does I am 5'9", since it is false about height to the nearest quarter of an inch not return us to height in inches?

To shift the subject matter from m to m', one needs to say something unambiguously directed at m'. This is much more possible if m' is the larger of the two than if it is the smaller. Deb is 6'1\frac{1}{4}" looks to be addressing itself to height to the nearest quarter inch rather than height in inches. I am 5'9' could be directed at either issue. I could try to nudge you back some other way: “Nevertheless, as far as I'm concerned, Deb is 6' 1".” This is bad form, however. Speaking to a larger subject matter, you signal the intention not to keep on ignoring some of what our statements were already about. The party proposing not to ignore a falsifier has the semantic high ground.

5.3 APPLIED MATH

Imagine we have a strange, kabbalistic reading of Genesis. Go forth and multiply, God commanded. The “multiply” means that the animals should proliferate at a constant rate, each year’s population n times larger than the year before’s. The value of n revealed itself when “forth” turned out to be a mistranscription of “fourth.” The command was issued on day five, and we believe on other grounds that the number of animals at that time was three. According to us, then,

(NA) The number of animals on the nth day = 3 \times 4^{(n-5)}.

Unfortunately for this way of putting it, our reading of Genesis also tells us that God never got around to creating numbers. So we can’t in consistency regard our hypothesis as true. How much should this bother us? Well, how

5“For some reason, the boundary readily shifts outward if what is said requires it, but does not so readily shift inward if what is said requires that. Because of this asymmetry, we may think that what is true with respect to the outward-shifted boundary must be somehow more true…” (Lewis [1979]).

6Isn’t there something odd about wheeling in worlds, sets, propositions and the like to show how one can avoid commitment to numbers? I confess not to being much concerned about this; the following points seem relevant. First, this book is not just for nominalists. Second, even those who believe in abstract objects may not feel they are committed to
much should it bother Lupoli that Falstaff’s testimony was not true? It’s enough for him that Falstaff’s testimony is true about his client. Similarly it’s enough for us if The number of animals on the n th day is $3 \times 4^{(n-5)}$ is true about the animals, or even generally the physical world. “Why don’t you use a sentence whose full content is what the animal multiplication formula says about the physical world”? Maybe we can’t think of such a sentence. Also though, even if a nominalistic paraphrase were available, it’s not clear what the motivation would be for using it, other than paranoid-schizoid horror at the mixing of truth with falsehood.

Our construction of the physical part of the animal numeration formula runs through worlds that are partly non-physical—worlds with mathematical objects in them. It’s a proposition that is true in w if The number of animals on the n th day = $3 \times 4^{(n-5)}$ is true in platonistically enhanced concrete duplicates of w. If we are nominalists, however, we might question whether these enhanced concrete duplicates are really possible. Platonists will likewise question the possibility of nominalistic worlds/ Numbers have traditionally been seen as existing in all worlds or none.

Now, for what it is worth, insistence on the modally extreme character of mathematical objects has in fact been waning of late. Also it is not clear why the same expressive work could not be done by schmumbers, understood to be just like numbers except for the requirement of existing in all worlds or none (Yablo [2002]). Suppose though that schmumbers are not available and that the traditional view of numbers’ modal status is correct. Still, if they are necessary, this is not because they are demanded by concreta, and if they’re impossible, it is not because concreta preclude them. Both hypotheses, the platonistic and nominalistic, are possible where physical things are concerned, just as the existence of {Socrates} is not decided by Socrates. See the appendix for more on impossible worlds which are, nevertheless, relatively possible.

5.4 INTENTIONAL IDENTITY

Consider a puzzle sentence of Geach’s: “Hob believes that a witch burned down his barn, and Nob believes that she blighted his mare.” Given that the barn burned down for natural reasons (a cow kicked over the lantern), them by their acceptance of Newton’s Laws. Third, the semantic theorist’s commitments are not to be visited on ordinary speakers. Fourth, the semantic theorist has the same need for abstract machinery as the physicist. Fifth, the semantic theorist may have hopes of kicking away the ladder; once you see what she is trying to convey with it, its work is done.

7To borrow a phrase from Crispin Wright, it is hard to think what conditions more favorable to the emergence of mathematical objects could be.

8“Impure” mathematical objects like $\{x \mid x = Socrates\}$ are another matter.

10Fine [1994]
not supernatural, there is nothing, it seems, for the sentence to be about; and yet it appears, in the circumstances Geach describes, to be true. The problem as it is usually conceived takes this appearance for granted. It is because the sentence is true that we need a regimentation that carries no commitment to witches.

But, how without witches are we to understand the binding relations between “a witch” and “she”? One might see the pronoun as standing in for a description, say, “the witch that burned down Hob’s barn.” But Nob may never have heard of Hob. No single description can work, because there is no limit to the ways in which Hob and Nob’s mental states can acquire what Geach calls a “common focus.” Nob may have been told about the supposed witch by Hob; the story may have been written up in the newspaper with Hob’s name omitted; it could be common “knowledge” in the community that exactly one witch turns up every year to cause mischief.

These problems arise only if the sentence is true. Maybe it strikes us that way because it is true about the topic under discussion. That topic is limited, I assume, to events that really occurred. The witch’s setting fire to the barn did not occur; it is a figment of Hob’s imagination. What is real is the fire itself, and events subsequent to the fire. Let us imagine, then, that the sentence is evaluated on the basis of what it says about \(f = \text{the fire and everything after} \). It is true about \(f \) if there is nothing in events since the fire to preclude its being true full stop. And indeed there is not. One can twist our world into one where Hob and Nob are in every sense thinking about the same witch without laying a hand on events since the fire, simply by putting that witch in Hob’s barn, with a torch, a few moments before.

5.5 NARROW CONTENT

Putnam showed in the 1970s that belief, desire, and so on are not “narrow” or “internal” states, as had previously been supposed. They are widely individuated, in the sense of depending for their instantiation on events outside the subject’s head.

A common reaction was to concede the point about belief proper, while attempting to carve out a narrow analogue of belief that answered to the naive conception. I won’t go into all the motivations for this, but they were interesting and initially convincing, to figures as far apart as Fodor and Dennett. There was more at work than nostalgia for the old standards of individuation. “Narrow” or “solipsistic” attitudes were to be, in Dennett’s phrase (Dennett [1982]), the “organismic contribution” to regular old wide attitudes. They were to be obtained by bleaching out, or abstracting away from, those aspects of externalistic belief that pertain to the external world, in order to focus on what remains: the goings-on in someone’s head that enables them to believe (plopped down in the right environment) that such and such.

This sounds like a job for subject matter. Sam’s narrow belief that salt
is plentiful is the part of Sam believes that salt is plentiful that concerns goings-on in Sam’s head, or, in Stalnaker’s phrase, the internal world.\\(^{11}\)

So, what does it say about goings-on in Sam’s head in \(w\), that Sam believes in \(w\) that salt is plentiful? Less than one might have have imagined. Sam narrowly believes water is plentiful in \(w\) if he believes of just about anything—dirt, as it might be—that it is plentiful. For let \(w’\) be a world just like \(w\) where Sam’s head are concerned, but with salt supplanting dirt as the predominant cause of his “dirt”-tokenings. Sam believes in \(w’\) that salt is plentiful, and \(w’\) is just like \(w\) where Sam’s head is concerned; that is enough, on the stated proposal, for him to narrowly believe in \(w\) that salt is plentiful. This seems like the wrong result. Believing that dirt is plentiful falls far short, intuitively speaking, of narrowly believing that salt is plentiful. That I would rather put salt on my food than pepper should not confer on me a narrow dietary preference for dirt over pepper.

Here is a possible way out. Central, stereotypical instances of a concept can be distinguished from marginal or peripheral instances. Yard birds are stereotypical, penguins less so. Soup pots are stereotypical, but not chamber or flower pots. This was noticed by Beckett—“It resembled a pot, it was almost a pot, but it was not a pot of which one could say, pot, pot, and be comforted”—and made into a semantic theory by Eleanor Rosch. Whatever one thinks of Rosch’s larger view, the distinction between marginal cases and central ones seems very real.

A similar distinction obtains at the sentential level. Tweety is a bird is centrally true, said of a sparrow; it is peripherally true, said of a penguin. Here we are still talking essentially about central instances of a concept—the concept of a bird— but we can go further. She ran to the edge and jumped is stereotypically true if she jumps off the edge, peripherally true if she jumps in place there, for exercise. I live with a philosopher is stereotypically true if there’s a philosopher at home other than me, marginally true if the philosopher is myself.

Consider now Sam believes that salt is plentiful. I cannot tell you in so many words what it takes for this to be stereotypically true. But one knows the type of situation that people would normally think of—the type of which one could say, Sam believes that salt is plentiful, and be comforted. And it certainly does not include the situation where the substance controlling dirt-appearances is in fact salt.

Could it be that the narrow content theorist chose the wrong sort of belief-attribution to cut down to size? Sam narrowly believes that salt is plentiful is the inside-the-head part, not of Sam believes that salt is plentiful, but Sam stereotypically believes that salt is plentiful.\(^{12}\) Sam narrowly believes that \(P\) if he stereotypically believes that \(P\) in a scenario like ours where the

\(^{11}\)One might want to go further, bleaching out also lower-level physical details like blood flow and glucose delivery. Nothing I say will depend on the fine details.

\(^{12}\)The suggestion about Hob-Nob sentences in the last section should probably be stereotypicalized as well.
internal world is concerned.

5.6 LAWS AND MODELS

Galileo is supposed to have discovered that distance fallen grows with the square of the time elapsed. This is puzzling, because the "discovery" is, owing to various complications (friction, e.g.), not really true. A familiar reply: “Laws are not true in reality. They hold in models where the complications do not arise.”

If law-statements are not true in reality, they shouldn’t be silent about it, either. It ought to say something about the world as it is that the law holds in worlds w corresponding to the model. Translation schemes have been suggested by which actual-world truths $S_@$ are to be read off truths S about w. $S_@$ might be to the effect that

1. S-worlds are somehow embeddable in the actual world, or
2. the actual world in certain respects resembles an S-world, or
3. the actual world is such as to make S true in a certain story.

Consider a simple-minded alternative

28 S’s truth in w testifies

not to the total truth, in $@$, of a hypothesis based on S
but the partial truth, in $@$, of S itself.

That Galileo’s Law holds, in a world without other forces, testifies to its truth here about motion due to gravity.

What is that, however? There would appear to be no such separate item as the component of an object’s progress that is due specifically to gravity. The fall of an apple does not harbor within it a second, faster, fall, unencumbered by friction. What does it mean, then, for Galileo’s Law to hold of motion due to gravity?

Recall the distinction above between observables, like my hand and the Sun, and observation, the subject matter. A theory of observables should have something to say about nuclear fusion. A theory true of observation can fill the Sun with pop rocks, if it likes. Gravitational motion must similarly be distinguished from the matter of motion due to gravity. Motion due to gravity is a relation on worlds; it lumps slow-fall frictional scenarios together with their fast-fall frictionless counterparts. For Galileo’s Law to hold of motion due to gravity, is for it to be true, period, in a counterpart world with the same gravitational forces as here.

13See (Crimmins [1989].
14Really we need the box-like notion here: it should be true in all such worlds free of countervailing forces. Otherwise, Distance fallen is proportional to the square root of the distance fallen is true about gravitational motion, too, since gravity is opposed in some worlds by levity.
This view of component motions has an analog for component forces. The total force on an apple is not really, we might think, the resultant of various sub-forces, all somehow duking it out. Rather we have a subject matter of force exerted by BLAH. Coulomb’s Law is true about force exerted by slow-moving charges, on account of being wholly true in worlds with no relevant other forces. Newton’s Law of Gravity is true about force exerted by massive objects.

Surely there is something, though, to the idea of total force being resolvable into components? The resolution is at the level of subject matter. The truth about total force is obtainable from the truth about force exerted by slow-moving charges of Coulomb’s Law, the truth about force exerted by massive bodies of the Law of Gravitation, and so on.15 We take the electrostatic vector from \textit{w} and sum it with the gravitational one from \textit{w′}. One thinks of this as “combining forces.” But it might better be understood as combining the states of things with respect to single-force subject matters to obtain the state of things with respect to total force.

Total force is a complicated matter, but the truth about it can be recovered from truths about simpler sub-matters. Some might see this as a model for scientific understanding in general. Here is a way of framing the issue, suggested by the work of Nancy Cartwright.16 By total nomological circumstances (\textit{n}), let’s mean the rule, however complicated, that constrains instantaneous states of the universe and determines evolution from one to the next. The decomposition of forces model suggests that \textit{n} should be resolvable into a bunch of (presumably orthogonal) \textit{n}_k\textit{s}, each corresponding to some particular sort of natural process, factor, or law. Is it clear this sort of factorization must be possible?17

5.7 NEGATIVE SINGULAR EXISTENTIALS

I believe that, as I’m tempted to put it, \textit{Pegasus does not exist}.

\begin{itemize}
 \item Lange [2009]
 \item Cartwright [1983]
 \item Similar questions arise elsewhere in philosophy, for example in ethics. “The value of a whole must not be assumed to be the same as the sum of the values of its parts” (Moore [1903]). “For most factors, their role in determining the overall moral status of an act cannot be adequately captured in terms of separate and independent contributions that merely need to be added in” (Kagan [1988]).
 \item The sentence has a paradoxical, self-undermining, flavor. On the one hand, the empty name makes it untrue. On the other, why is the name empty? Because Pegasus does not exist. 	extit{Pegasus does not exist} is untrue because Pegasus does not exist. The pattern here—\textit{S} is untrue, if it is, because \textit{S}—is not unfamiliar. \textit{This sentence is untrue} is true, if it is, because it is not true. Why in Field’s view are numerical claims untrue? Because there aren’t any numbers. \textit{The number of numbers = 0} is untrue, because the number of numbers is 0.
\end{itemize}
Why do we treat them as true? “What gives us,” as Kripke says, “the right to talk this way?”

I want to start with a simpler question. Any difficulty that arises for \textit{Pegasus does not exist} arises also for \textit{Pegasus is not in this room}. Why does \textit{it} seem true? There are two places to look for the answer—Pegasus, and the room—and we are not going to get any help from Pegasus. The truth of, or in, \textit{Pegasus is not in the room}, will have to be found in the room. The first point that needs to be made is that, although \textit{Pegasus is not in the room} is untrue—I will treat it as gappy—this is not because of how matters stand where the room is concerned. There is nothing going on in here to prevent Pegasus from existing out in the hall, in which case \textit{Pegasus is not in the room} is true outright. \textit{Pegasus is not in the room} is true about the room about the room and its contents, or better, \textit{the room and its contents}.

Is that enough to make it assertible? Not necessarily, for reasons discussed in section \textit{2.4}. \textit{Pegasus is not in the room} can be true, compatibly with goings-on in the room, but who is to say it cannot also be false? The second point is that the room and its contents do seem to preclude this, that is, \textit{Pegasus is in the room} cannot be true compatibly with goings on in the room. Kripke is making, I think, a similar point when he says,

... without being sure of whether Sherlock Holmes was a person, or whether we can speak of hypothetical situations under which ‘Sherlock Holmes did such and such’ correctly describes the situation, we can say ‘none of the people in this room is Sherlock Holmes, for all are born too late, and so on’; or ‘whatever bandersnatches may be, certainly there are none in Dubuque.’ (Kripke [2011a], 71)

\textit{Pegasus is not in this room} can be true, compatibly with how matters stand in the room, but not false, under the same constraint. Of the notions of fidelity to a subject matter introduced earlier (section \textit{2.4}), to be true in some m-equivalents of the actual world, and false in none of them, was the strongest. \textit{Pegasus is not in this room} counts as true, the suggestion is, because it is true, and only true, about the \textit{room and its contents}.

None of us here is qualified to be Pegasus; that is why \textit{Pegasus is in the room} is not true about the room and its contents. The reasons are different in different cases. I take it, though, that every \(x\) in the room has features \(Q_x\) such that, \textit{even allowing that Pegasus, Holmes, etc could have turned out to exist}, they could not have turned out to be \(Q_x\), or, if you prefer, a \(Q_x\) could not have turned out to be Holmes. Kripke speaks of being born too late, for instance. I doubt that this is disqualifying by itself. A devoted spiritualist, Doyle might have had a premonition of you and intended the stories as a kind of anticipatory homage. (Or perhaps Godel wrote them in 1977 in an attempt to work through his feelings about Schmidt.) But at some point, as the details are piled on—Doyle never had thoughts about you, there was no ghostwriter involved, etc.—we reach a point of no return.
The story cannot be continued so that if things had turned out like *that*, you would have turned out to be Holmes.\(^{19}\)

The same applies to *Pegasus is nowhere in the solar system,the Milky Way, etc.* Eventually we get to *Pegasus is nowhere at all*, or *Pegasus is not one of us*, where ‘us’ takes in everything in existence. And now we can try the same strategy as before. *Pegasus is not in the room* counts as true because it is true, and not false, about *the room and its contents*, *Pegasus is not one of us* counts as true because it really is true about a certain subject matter, call it *us*, while its negatum, *Pegasus is one of us* lacks this feature.\(^{20}\)

What goes into the subject matter I have called *us*? It had better not be too comprehensive, or room will not be left for Pegasus to be tacked on as a further item; any such addition will disrupting the state of things where we are concerned. It should be comprehensive enough, though, to stop Pegasus from being smuggled into the existing population. We have already seen how to arrange this. Take any individual that you like— you, me, the fencepost, the wide Sargasso Sea,.... it will have properties such that, granting Pegasus could have turned out to exist, it could not have turned out like *that*. If we import these properties into *us*, then the state of things where we are concerned blocks any attempt by Pegasus to blend into the existing population.

That explains, maybe, why it counts as true that *Pegasus is not one of us*. What about *Pegasus does not exist*? Why does it seem true, notwithstanding the empty name? It makes no sense, on the face of it, to understand *Pegasus does not exist* on the model of *Pegasus is not in this room*. That would be to reckon *Pegasus does not exist* true, *period*, in a world where the existing things are just what they are here, and Pegasus is not among them. How can there be a world *w* that is just like the actual world with regard to what exists, yet *Pegasus is not in w* an empty name? There is, of course a tradition, the Meinongian tradition, that treats these two issues as separate; I have already said, however, that I am not a Meinongian.

But so what? I have also already said I am not a Platonist. That didn’t get in the way of using Platonic language instrumentally to say something about a non-Platonic subject matter. It suffices for expressive purposes to know what the Platonic doctrine involves, and sees what it would be for it to hold in a concrete duplicate of actuality. Similarly the fact that I am not

\(^{19}\)But, you might say, “qualifications” have nothing to do with it, for names lack descriptive content. That none of us is “qualified” is not a reason for *Pegasus is here in the room* to be false. I agree and have said it is *not* false. It doesn’t have to be, to be false about *m*, nor does the name need descriptive content. “Could have turned out” conditionals are sensitive as well to metasemantic features of the sort Kripke tried to capture with reference-fixing descriptions. These may be just as important to competence with a name as its meaning.

\(^{20}\)“The topic is US?!” The name in *N is P* is topical if the implied question is, *What about N?*, focal if it is *What is P?*. “[T]o what question is ... *John exists* a felicitous answer? I think it is *Who/What exists*?... [Not, *What about John?] The topic is: what exists....” Note, *John exists and so does Harriett* is better than *John exists and writes poetry*. *John* is a better candidate for focal stress in *John exists* than *exists*. *John EXISTS* sounds quite unnatural (Atlas [1988], Gundel [1985])
HOW TO READ THIS BOOK

a Meinongian should not stop me from using Pegasus as though it referred, given that I am not representing the Meinongian implications as true. It is enough for expressive purposes to know what the doctrine involves. I take it we are not utterly baffled by the hypothesis of Pegasus being “there” in a world that is just like ours with regard to what exists in it. One might try to argue that tacking on abstract objects, over and above the concrete ones, is easier than tacking on subsistent objects under and below the existent ones. But I find it hard to see an in-principle difference here. The add-ons are in neither case metaphysically possible. But, abstract objects are relatively possible; they are possible where concrete things concerned. Subsistent objects are relatively possible, too; they are possible where existing things are concerned.

Here then is my Jamesian excuse for saying Pegasus fails to exist, even if it’s not true. All I care about is its import for existing things, and I have no other way to articulate that than to say that Pegasus fails to exist, on the understanding that I am advocating only for what it says about existents. It may seem unfortunate that the construction runs essentially through Meinong worlds, worlds where Pegasus subsists without existing. But it’s no worse than the use made of Plato worlds in the explanation of what The number of planets = 8 says about the physical. Meinong was wrong, let’s agree. But the idea of nonexistent objects nevertheless available to serve as referents is not absurd in itself. Pegasus doesn’t exist fails to be true only because this coherent idea is false.

5.8 PURE MATH

I am a non-Platonist, let’s suppose this time a nominalist. I think it is false that There are primes over 10. Like anyone else, though, I want to be able to say it. Why? Well, if we’re to continue along the tracks laid out above, it’s because the statement has a part that I do believe, a part that is interestingly true in my view, and remains so even if numbers do not exist.

This time, though, it is harder to see what the true part might be. Doesn’t it follow from the denial of numbers that, as Hartry Field once suggested (Field [1980]), true-seeming existential numerical claims (like There are primes over 10) are trivially false, and false-seeming universal numerical claims (like Primes over 10 are even) are trivially true? That would seem to leave little room for interestingly true parts to larger numerical falsehoods.

Well, but should we agree that Primes over 10 are even is (in the absence of numbers) every bit as true as Primes over 10 are odd? To the extent this seems plausible, it is because we take ourselves to be dealing with enumerative generalizations about whatever numbers there happen to be. I don’t know why we would assume this, any more than we would assume that Objects suffering zero net force explode is an enumerative generalization about whatever physical objects there happen to be or Steve advises transfer students from Antarctica is an enumerative generalization about transfer
students from Antarctica, if any. *Objects with no impinging forces explode* sounds false, *even if there are no such objects*, simply because exploding is physically unlawful behavior for “them”. It’s the same with *Primes over 10 are even*; it sounds false, whether there are primes over 10 or not, because this is mathematically unlawful behavior for “them.”

How are we to explain the intuitive falsity of generalizations with no counterexamples? They have a generic part stating how objects of the relevant sort behave *qua objects of that sort*, and an existential part to the effect that the relevant objects are there. *There are infinitely many primes* says in part that *Numbers are of a type to include infinitely many primes*, in part that the type is instantiated. Nominalists, when they say *There are infinitely many primes*, are putting the first part forward as true but not the second. Alternatively we could say they are putting the full statement forward as true-about-a-certain-subject-matter, that subject matter being the Sosein of numbers rather than their Sein.

5.9 SUMMING UP

“A rule of thinking which would prevent me from acknowledging certain kinds of truth would be an irrational rule” (William James). Truth-puritanism, the policy of accepting only full truths, is irrational in this sense. The difference with James is that, rather than a falsehood here tolerated for the sake of a truth there, a statement’s falsity is tolerated for the sake of the truth of, or in, that very statement. Who might stand in need of a Jamesian excuse? The non-platonist who wants to say, *The rate of star formation is decreasing*, because it is true about the stars. The loose talker who wants to say, *I am 5’ 9”*, because is true about height to the nearest inch. The non-Meinongian who wants to say that *Pegasus does not exist*, because it is true about what does exist. And, looking ahead a bit, the non-skeptic who wants to say that she is sitting by the fire, because it is true, and known to be, about her posture and proximity to the fire.

APPENDIX: IMPOSSIBILITY

Hypotheses are impossible for a reason; there is something that rules them out. These ruler-outs are the “constraints.” Let the set of them be Ω.

29 φ is impossible if $\Omega \vdash \neg \varphi$; otherwise φ is possible.

21 Lewis takes this one step further. He suggests there might be generalizations G about so and so’s when, not only are so-and-so’s absent, they are absent because of G. *Brakeless trains are dangerous* is his example. Another might be *The universal set contains everything, including its own power-set.*

Possible worlds are, or correspond to, maximal possibilities: \(\varphi \)s which are consistent with \(\Omega \) but cannot be strengthened so as to remain consistent with it.

The constraints might be general metaphysical principles like *Material objects are spatially extended*.\(^{23}\) They might take the form of identities (*To be water is to be \(H_2O \))* and semi-identities (*To be water is in part to contain hydrogen*).\(^{24}\) The best known proposal along these lines is Kit Fine’s.\(^{25}\) The constraints in his system are Aristotelian real definitions, for instance, \{Socrates\} = \(df \) the set whose only member is Socrates, Goliath = \(df \) the statue made in such and such a way from such and such materials.

A scenario is possible, full stop, if there is nothing to rule it out. But we can also consider relatively possible scenarios—scenarios that, while perhaps impossible all things considered, are possible some things considered. \(\varphi \) is possible relative to \(\Gamma \) (a proper subset of \(\Omega \)) if it is possible when constraints not in \(\Gamma \) are ignored, or possible on the assumption that \(\Gamma \) contains all the constraints there are.

\[\varphi \text{ is impossible}_\Gamma \text{ if } \Gamma \vdash \neg \varphi; \text{ otherwise it is possible}_\Gamma. \]

Possible\(_\Gamma\) worlds are, or correspond to, maximal \(\Gamma \)-possibilities: \(\varphi \)s such that (i) \(\Gamma \not\models \neg \varphi \), but (ii) \(\Gamma \vdash \neg \psi \) for all \(\psi \) strictly implying \(\varphi \).

Clearly more is possible where some constraints are concerned than is possible where all constraints are concerned. A world that is \(\Gamma \)-possible for some specified \(\Gamma \subseteq \Omega \), but is not \(\Omega \)-possible, is strictly speaking impossible. But there is nothing contradictory about it; it is just a maximal \(\varphi \) consistent with the given constraints.

For Socrates to exist without \{Socrates\} is absolutely impossible, Fine would say; it happens in no possible worlds. But there is nothing in the nature of Socrates to prevent it. One can know all there is to know about who or what Socrates is without having the slightest idea of his belonging to certain sets. Socrates-without-\{Socrates\} is an example of an absolutely impossible scenario that is nevertheless relatively possible—possible where \(\Gamma \) is concerned, for some \(\Gamma \subseteq \Omega \).

This bears on a problem raised earlier (section 5.3) about the modally extreme character of mathematical objects. Just as there is nothing in the nature of Socrates to decide whether \{Socrates\} exists, there is nothing in the nature of the concrete world generally to decide the existence of mathematical objects generally. It is at peace both with their existing and their not existing; there are relatively possible worlds of both types. *The rate of star formation has been exponentially decreasing* is true about the concrete world if it is completely true about a world just like this one in concrete respects; that that world is (according to the nominalist) only relatively possible is neither here nor there.

\(^{23}\) Sider [2002].
\(^{24}\) Rayo [2008].
\(^{25}\) Fine [1994].
Room has been made for metaphysical impossibilities, and even perhaps mathematical impossibilities. (Cauchy sequences don’t necessarily converge, bracketing the real numbers’ least upper bound property.) But it may be useful for some purposes to allow in logical impossibilities. (30) does not allow this. If ψ is a logical falsehood, then it is not Γ-possible for any Γ, since $\neg \psi$ is logically entailed even by the empty set. That being said, the basic idea of construing relative possibilities as hypotheses that are not refutable in certain particular ways may still have something to offer us.

When a scenario is impossible, that is because hypotheses “witnessing” the scenario are ruled out by the constraints. One sort of relative possibility is obtained by weakening the constraints. The kind we are after now is obtained by weakening the conditions on witnesses. Ω gathered together the conditions with which φ had to be consistent, if φ was to be possible. Let Θ be an equivalence relation on formulas such that Ω has to be consistent with all hypotheses Θ-equivalent to φ, for φ to be possible. (Θ can be identity, or logical equivalence. Θ becomes the empty set.)

31 φ is impossible iff $\vdash \neg \psi$ for all $\psi \equiv_\Theta \varphi$; otherwise φ is possible.

This is regular old logical impossibility. For the relative notion, we substitute a determinable Δ of Θ. φ is possible relative to Δ if anything Δ-equivalent to φ is possible.

32 φ is impossible$_\Delta$ iff $\vdash \neg \psi$ for all $\psi \equiv_\Delta \varphi$; otherwise φ is possible$_\Delta$.

So, for instance, let φ be $\neg(p \supset (q \supset p))$, and let ψ be Δ-equivalent to φ iff ψ is (like φ) the negation of a conditional whose consequent’s consequent is identical to its antecedent. φ is impossible$_\Delta$, because no formula of that type is self-consistent. Now we weaken Δ so that ψ is Δ-equivalent to φ iff it is (like φ) the negation of a conditional whose antecedent is repeated in its consequent; we leave out, this time, that the antecedent and final consequent are one and the same. φ now become relatively possible, by virtue of being Δ-equivalent to $\neg(p \supset (p \supset q))$, which is self-consistent. A logically impossible world is one that is able to look favorably on a formula like φ, despite its logical falsity, by its not quite laserlike focus on the structural features that prevent φ from being true.
Chapter Six

Confirmation and Verisimilitude

Inquiry aims at the truth. What is it for one belief state to be closer to the truth than another? There are two dimensions to this. One relates to the kind of attitude we adopt. If \(A \) is true, our attitude towards it should be as close as possible to full belief. The other is to do with the attitude’s content. If the content of our belief is \(A \), then \(A \) should be as truthlike or verisimilar as possible. Confirmation theory is directed at the first goal. The theory of verisimilitude is directed at the other.

6.1 SURPLUS CONTENT

Imagine that we are investigating a hypothesis \(H \), when we learn that a certain consequence \(E \) of \(H \) is true. \(E \) rules out certain ways \(H \) might be false: the ones that require \(E \) too to be false. Eliminating opportunities for falsity is confirmation of a sort. If \(H \) is Everyone was born on a Thursday, \(E \) might be Zina was born on a Thursday. \(E \) confirms—makes it likelier that—everyone was born on a Thursday, by eliminating a possible counterexample.\(^1\) What it does not provide is evidence for the rest of \(H \)—for \(H – E \). Positive instances make a generalization likelier even if they are irrelevant to, even in fact if they count against, the rest of the generalization.\(^2\) To come at it from the other direction: no matter how much \(E \) counts against \(J \), \(E \) counts in favor of a hypothesis that entails \(J \), viz. \(J&E \). Call that basic or simple confirmation. A second and more demanding notion by asking \(E \) to bear favorably also on the rest of \(H \)—its surplus content relative to \(E \). Zina was born on a Thursday does not in the more demanding sense confirm Everyone was born on a Thursday, for it says nothing about other tosses. Still less does No one has ever run a three-minute mile confirm Today will be the first three-minute mile ever.

The distinction between “mere content cutting” (Gemes [1994]) and, let’s call it, inductive confirmation goes back at least to Goodman, who used it to characterize lawlike, as opposed to accidental, generalizations. All Fs are Gs is lawlike, Goodman suggested, if it is inductively confirmed by its instances. All ravens are black is lawlike to the extent that a raven observed to be black counts in favor of other ravens’ being black; the tested part of the

\(^1\) If \(H \) entails \(E \) and \(0 < \text{pr}(E), \text{pr}(H) < 1 \), \(\text{pr}(H|E) \) exceeds \(\text{pr}(H) \).

\(^2\) No one has ever run a three-minute mile makes it likelier that Today will be the first three-minute mile ever.
hypothesis reflects favorably on the untested. Nothing like that occurs with *Everyone was born on a Thursday*; the generalization is thus accidental. But, where Goodman focuses on generalizations, our notion of inductive confirmation is meant to be completely general: to inductively confirm \(H, E \) should bear favorably on \(H \)’s surplus content relative to \(E \), whatever form that surplus content takes. So, for instance, that the planets have roughly elliptical orbits should count in favor of each of the three laws of motion and the law of gravitation.

Inductive confirmation is tied up with *surplus content*; so views about what \(H \)’s surplus content with respect to \(E \) is will guide one’s thinking about when inductive confirmation occurs. Popper and Miller claim, in a 1983 letter to *Nature*, that it never occurs. \(H \) is likelier given \(E \) than without it, we assume; \(E \) basically confirms \(H \). To test for inductive confirmation, we need to isolate \(H \)’s surplus content. When this is done, we find that \(E \) lowers its probability:

1. \(H \) is logically equivalent to \((H \lor E) \land (H \lor \neg E) \).
2. The first conjunct \(H \lor E \) simplifies to \(E \), since \(E \) is entailed by \(H \).
3. \(E \) makes \(E \rightarrow H \) less likely: \(p(H \lor \neg E | E) < p(H \lor \neg E) \).
4. \(E \) does not inductively confirm \(H \).

Line 3 says that the surplus content over \(E \) of \(E \land (H \lor \neg E) \) is \(H \lor \neg E \). What is the argument for that? Popper and Miller seem to be conceiving logical remainders on the model of numerical remainders. To find \(m-n \), one looks for a \(y \) such that \(m = n + y \); \(m-n \) is that \(y \). To find \(H \land \neg E \), we are to look, apparently, for a \(Y \) such that \(H \leftrightarrow E \land Y \).

But the cases are not really analogous. The equation \(m = n + y \) determines a unique \(y \) for each \(m \) and \(n \), and the “equation” \(H \leftrightarrow E \land Y \) does not. *It’s wet* ought surely to be a candidate for what *It’s cold and wet* adds to *It’s cold*. Popper and Miller don’t allow this. They think \(C \land W \) adds \(C \rightarrow C \land W \) to \(C \), and more generally that \(H \land \neg E \rightarrow H \).

Line 3 assumes that the surplus content is one, relatively complex, thing when it could just as easily be another, much simpler thing. The analogue of line 4 for the simpler thing is quite likely false, and in cases of interest, the opposite of the truth. \(E \) will indeed make \(H \land \neg E \) likelier if \(H \) is \(E \land F \), and \(E \) is positively relevant to \(F \).

Granted that it is not the only solution to \(H \leftrightarrow E \land Y \), could \(E \land \neg E \) be the best solution? Hempel may think so: \(E \rightarrow H \) “has no content in common

3Provided \(p(H | E) \neq 1 \neq p(E) \).

4Popper and Miller could have made an even stronger objection to inductivism. \(H \) entails \(E \), so \(H \lor \neg E \) is equivalent to \(\neg E \). \(E \) not only fails to confirm the surplus content \(H \lor \neg E \), it positively contradicts it! Something is wrong with your theory if what \(H \) adds to \(E \) is coming out to be \(\neg E \).

5This was a not uncommon view at the time. “Th[e] ‘new’ information contained in \(H \) is expressed by the sentence \(H \lor \neg E \). (For \(H \) is equivalent to \((H \lor E) \land (H \lor \neg E)) \)” (Hempel [1966]). “The purely scientific utility of adding \(H \) to \(E \) is...m(H \lor \neg E)/m(E)” (Bar-Hillel and Carnap [1953])
with E since its disjunction with E is a logical truth" ([Hempel [1960]]). He relies here on an idea already considered (section 1.3), viz. that A and B both say inter alia that $A \lor B$, giving them non-trivial common content unless A and B are contraries. We'll be talking about this at length in chapter 8, but two points can be made now. The first is that *Snow is white* does not in any sense whatsoever share content with *Charlemagne was Holy Roman Emperor*. Second, the idea that $H \land E \mapsto H$ overreacts to the (correct) point that $H \land E$ should not be false just because E is false, by making it true when E is false. E should be as far as possible independent of $H \land E$.6

6.2 CONDITIONS ON CONFIRMATION

The golden age of confirmation theory began with Hempel’s enunciation in Hempel [1943], 7 of four possible conditions on evidential support

ENTAILMENT: E confirms any H that it entails.

CONSISTENCY: If E confirms H, E does not confirm any contrary J of H.

SPECIAL CONSEQUENCE: If E confirms H, it confirms any J that H entails.

CONVERSE CONSEQUENCE: If E confirms H, it confirms any J entailing H.

A fifth principle, mentioned in passing, is

CONVERSE ENTAILMENT: E confirms any H that entails it.

He accepts the first three conditions, but not the two CONVERSES. His objection to CONVERSE CONSEQUENCE is that it trivializes the confirmation relation, given ENTAILMENT and SPECIAL CONSEQUENCE. To see why, let E and H be arbitrarily chosen.

1. E confirms E (ENTAILMENT)
2. E confirms $E \land H$ ([1], CONVERSE CONSEQUENCE)
3. E confirms H ([2], SPECIAL CONSEQUENCE)

This objection has been found puzzling. Why put the blame on CONVERSE CONSEQUENCE? Its contribution is only to get us to (2): E confirms $E \land H$. But (2) may seem plausible in its own right. Also (2) follows directly from CONVERSE ENTAILMENT, which seems on solider ground than CONVERSE CONSEQUENCE. (If H entails E, then $\neg E$ precludes H. E removes the threat that $\neg E$ poses to the truth of H.) CONVERSE ENTAILMENT is backed, too, by the Bayesian analysis of confirmation. pr($H \mid E$) just about always exceeds

6See Gemes [1994, 1997]. Many of the ideas in this chapter are due to Gemes.
pr\((H)\) if \(H\) entails \(E\). SPECIAL CONSEQUENCE, on the other hand, is from a Bayesian perspective completely untenable. Evidence making \(H\) likelier cannot make all its consequences likelier; there are consequences like \(E\rightarrow H\) whose probability is bound to go down.

Why is Hempel so attached to SPECIAL CONSEQUENCE, when the problems nowadays seem obvious? Carnap thought that Hempel might have been mixing up two notions of confirmation. Let \(c(H, E&K)\), a real number between 0 and 1, be \(H\)'s likelihood given \(E\), relative to some body \(K\) of background information. \(E\) confirms \(H\) incrementally, relative to \(K\), if \(c(H, E&K) > c(H, K)\). It confirms \(H\) absolutely if \(c(H, E&K) > 1-\epsilon\) for some suitable \(\epsilon\).

Absolute and incremental confirmation should definitely not be confused, but is Hempel confusing them? One would expect Carnap to argue that some of Hempel’s conditions hold only for the absolute notion, others only for the incremental notion. But all of Hempel’s conditions hold for the absolute notion! It is CONVERSE CONSEQUENCE and CONVERSE CONSEQUENCE, which he rejects, that fail to hold absolutely.

The problem is that his rhetoric and his examples, which tend to involve generalizations and their instances, suggest the incremental notion. A black raven makes it likelier, not absolutely likely, that all ravens are black. The incremental notion is naturally understood as positive probabilistic relevance, or probabilification. And probabilification satisfies neither of Hempel’s two principal conditions. It violates CONSISTENCY, for \textit{Rudy is a raven} is positively relevant both to \textit{Rudy is a happy raven} and \textit{Rudy is an unhappy raven}. It violates SPECIAL CONSEQUENCE, for \textit{Rudy is a black raven} incrementally confirms \textit{Rudy is a black raven and all other ravens are white} despite being negatively relevant to \textit{All other ravens are white}.

6.3 A THIRD WAY

Hempel doesn’t have a leg to stand on, it seems. His conditions hold for absolute confirmation, but that is not what he’s talking about. Incremental confirmation is something like probabilification, but that does not meet his conditions. This does not entirely settle the matter, however, for a reason noted by Earman:

...there may be some third probabilistic [notion of] confirmation that allows Hempel...to pass between the horns of this dilemma. But it is up to the defender of Hempel’s instance-confirmation to produce the tertium quid (Earman [1992], 67).

Hempel left, in fact, a number of clues suggesting what the third probabilistic notion might be. Here he is introducing the stronger condition of which SPECIAL CONSEQUENCE is meant to be a corollary (?, 103):

an observation report which confirms certain hypotheses would invariably be qualified as confirming any consequence of those
hypotheses. Indeed: any such consequence is but an assertion of all or part of the combined content of the original hypotheses and has therefore to be regarded as confirmed by any evidence which confirms the original hypotheses. This suggests the following condition of adequacy:

GENERAL CONSEQUENCE: If an observation report \(E \) confirms every one of a class \(P \) of sentences, then it also confirms any sentence \([Q] \) which is a logical consequence of \(P \).

Hempel’s reasoning here is interesting. Any consequence \(Q \) of \(P \)—\(P \) might be, for instance, \(\{P_1, P_2\} \)—“is but an assertion of all or part of the combined content” of \(P_1 \) and \(P_2 \) (103). \(Q \) “has therefore to be regarded as confirmed by any evidence which confirms” \(P_1 \) and \(P_2 \). The implicit assumption is that \(E \)’s support for \(P \) must be regarded as carrying through to its parts.

The support carries through, if \(E \) confirms “every one” of the sentences in \(P \). Why does Hempel want \(E \) to confirm both of \(P_1, P_2 \), as opposed to either of them, or their conjunction? If one says either, then \(E \) confirms any \(F \) that you like, by virtue of confirming a member (the first) of \(\{E, F\} \). Similar difficulties arise if it’s the conjunction we focus on; \(E \) might confirm \(E \& F \) entirely by way of its first conjunct. Hempel asks \(E \) confirm each of \(P \)’s members separately because otherwise GENERAL CONSEQUENCE would not be plausible.

But now, having insisted in GENERAL CONSEQUENCE on “wholly” confirming evidence—evidence confirming both of \(P_1, P_2 \)—should he not also require wholly confirming evidence in SPECIAL CONSEQUENCE? Any reason there might be for wanting \(E \) to confirm both members of \(\{P_1, P_2\} \) is a reason for wanting it to confirm both conjuncts of \(P_1 \& P_2 \). SPECIAL CONSEQUENCE as we read it today imposes no such requirement. This could be an oversight on Hempel’s part. Or, it could be that the requirement is imposed by SPECIAL CONSEQUENCE as he understands it.

Consider another objection he makes to CONVERSE CONSEQUENCE; it has Rudy is black confirming All ravens are black \& force = mass \times acceleration. This is puzzling on the standard interpretation, since Rudy’s blackness does “basically” confirm the conjunction; it does make it likelier. The objection has got to be that Rudy doesn’t confirm all of the conjunction, because it’s irrelevant to whether \(F = ma \). To confirm a conjunction, Hempel is thinking, \(E \) must confirm both conjuncts. In Bayesian terms, \(E \) must probabilify the conjuncts—or, to avoid syntacticizing the notion, the parts—together and separately.

(FC) \(E \) fully confirms \(H \) iff \(E \) probabilifies \(H \) and its parts—strictly, those of its parts that are not already certain.\(^7\)

\(E \) must “pervasively” or “thoroughly” probabilify \(H \), the thought is, to fully confirm it.

\[^7\] pr(\(J | E \)) > pr(\(J \)) for each \(J \leq H \) such that pr(\(J \)) \(\neq 1 \).
I want to look back now at a problem raised in section 6.2. Hempel has three conditions on confirmation: ENTAILMENT, CONSISTENCY, and SPECIAL CONSEQUENCE. Two of the three fail for the kind of confirmation (basic, incremental) that he is supposedly talking about. How could he have missed this? Let me list the conditions again, first as originally understood, and then in modified form, with full confirmation (confirmation\textsubscript{F}) put in for basic confirmation.

ENTAILMENT
(B) If \(E \) entails \(H \), then \(E \) basically confirms \(H \).
(F) If \(E \) entails \(H \), then \(E \) fully confirms \(H \).

ENTAILMENT held in its basic form, but full entailment is stronger. To see that it too is correct, suppose that \(E \) entails \(H \), and let \(K \) be part of \(H \). \(E \) entails \(K \) by transitivity of entailment, so \(\Pr(K|E) = 1 \). But then \(\Pr(K|E) > \Pr(K) \) unless \(\Pr(K) = 1 \). This is what it means for \(E \) to fully confirm \(H \).

CONSISTENCY
(B) If \(H \) contradicts \(K \), then \(E \) does not basically confirm both.
(F) If \(H \) contradicts \(K \), then \(E \) does not fully confirm both.

Here is a typical counterexample to CONSISTENCY in its original version. \(E \) basically confirms \(H = E \& F \) and \(K = E \& \neg F \), since both entail \(E \) and a statement’s consequences make it more probable. Are both fully confirmed by \(E \), that is, does \(E \) enhance the likelihood of \(H \) and \(K \) and their parts. Certainly not, for it would then have to probabilify both \(F \) and \(\neg F \).8

SPECIAL CONSEQUENCE
(B) If \(E \) basically confirms \(H \), then it basically confirms \(H \)’s consequences.
(F) If \(E \) fully confirms \(H \), then it fully confirms \(H \)’s parts.

Suppose that \(E \) fully confirms, or pervasively probabilifies, \(H \). Then it probabilifies \(H \)’s parts, and hence (by transitivity of inclusion) the parts of its parts—which is the same as pervasively probabilifying the parts. If this is how Hempel understands SPECIAL CONSEQUENCE, then one sees why he finds it obvious. That an \(E \) confirming \(H \) and its parts confirms, too, their parts, is virtually a logical truth.

A word finally about Hempel’s positive theory of evidential support, which is related to the Hypothetico-Deductive model of confirmation, and also to the converse entailment condition, which he rejects. A hypothesis is not always confirmed by its entailments, but a certain kind of hypothesis—a generalization—is, it seems, confirmed by a certain kind of entailment, what he calls its “development” for a particular class of individuals.

How is \(G \)’s development for \(I \) — \(\delta_I(G) \)—defined? It sounds like it should be the part of \(G \) that concerns the relevant individuals. Hempel’s positive theory would then be that a generalization is confirmed by certain of its parts. But that is not the definition he gives:

8I assume that \(F \) and its negation are parts (not only conjuncts) of \(H \) and \(K \).
δ_I(G) is G with its quantifiers restricted to the individuals in I.

This sometimes delivers a part. All ravens are black, with its quantifiers restricted to birds in the back yard, is All ravens in the yard are black. But not always. δ_I(G) is not always even a consequence of G, much less included in it.

Let pluralism be the theory that for all x there exists a y that is not identical to x. Pluralism is true, let’s suppose. But its development for one-element domains is false; there is indeed just one thing, leaving aside all the other things. Pluralism’s development for one-element domains is not even a consequence, then, of the theory itself. G’s development for I may not reflect well on G, even if it is true and G entails it. Let monism be the denial of pluralism: every x is identical to every y. Monism’s development for {Chicago} says that everything identical to Chicago is identical to everything else with that property. This is a truth entailed by monism. But it hardly sounds like a reason to think monism is true.9

6.4 BAYES AND HYPOTHETICO-DEDUCTIVISM

Hempel thought that qualitative confirmation theory should be studied first, followed by comparative confirmation—E favors H over H′—and then quantitative. That is certainly not the view today; quantitative confirmation has stolen the spotlight. Bayesians are sometimes willing to share the spotlight with Hempel and company, if only to run circles around them as a warm-up exercise. A typical textbook begins by isolating the grain of truth in, say, the hypothetico-deductive model of confirmation, or inference to the best explanation. Not everything can be saved, but that itself is interesting. The feeling seems to be that what was right in the qualitative tradition is explained by Bayes, and what was wrong is refuted by Bayes.

One tests a hypothesis, according to the hypothetico-deductive model, by seeing whether its consequences check out. False consequences count definitively against H; true consequences confirm it.

(HD Confirmation) E confirms H if H entails E; it confirms H relative to background information K if H&K entails E, and K alone does not.10

Bayesianism seems to vindicate this idea, since if H entails E, then p(H|E) ≥ p(H). But, as always in philosophy, the vindicated idea has been questioned. We will focus on the “tacking paradoxes.”11

9I don’t know to what extent Hempel can be seen as aiming here for a notion of partial or directed truth—truth where a certain subject matter is concerned. G’s truth about a subject matter m corresponds to the full truth of what G says about m. If that is what Hempel was after, then our objection is pretty niggling: the part of G that concerns a population-based subject matter cannot always be obtained by restricting G’s quantifiers to the relevant population.

10For some of the complications, see Christensen [1997].

11There is a huge literature on these paradoxes. We’ll be skimming the surface of the
TACKING BY DISJUNCTION If H entails E, then it entails $E \lor E'$ as well. The class of confirmers of a given hypothesis is closed under the operation of tacking on a random disjunct. All emeralds are green, if confirmed by This emerald is green, is confirmed also by Either this emerald is green, or no emeralds are green.\(^{12}\)

TACKING BY CONJUNCTION If H entails E, then E is also entailed by $H \& H'$. The hypotheses confirmed by a given piece of evidence are closed under the operation of tacking on random conjuncts. A green emerald confirms not only All emeralds are green, but also All emeralds are red apart from this green one.\(^{13}\)

Surely there is something right, though, about the idea that a theory is to be evaluated by its consequences.\(^{14}\) Not all its consequences, perhaps, given the tacking by disjunction problem; not all theories with the given consequences, perhaps, given the tacking by conjunction problem. But if E is the right kind of consequence, and H the right kind of implier, then, it seems, the relation should hold (Gemes [1998]).

Fine, but what is the right kind of H-consequence? That H with a random disjunct tacked on is the wrong kind suggests that, of its consequences, H is better, or more reliably, confirmed by those that are parts.\(^{15}\) And what is the right kind of E-implier? That H with a random conjunct tacked on is the wrong kind suggests that, of its parts, H is better confirmed by those that probabilify its other parts.

6.5 BAYES AND INSTANCE CONFIRMATION

Hempel’s paradox of the ravens\(^{16}\) has four elements: three plausible-looking premises and a nutty-looking apparent consequence of those premises.

Nicod’s Criterion: All Fs are Gs is confirmed by its instances.

Equivalence Condition: Logical equivalents are confirmationally alike.

Equivalence Fact: All Fs are Gs is equivalent to All non-Gs are non-Fs.

Paradoxical Result: Ravens are black is confirmed by non-black non-ravens.

If there is a standard response to this, it’s to embrace the paradoxical result. A non-black non-raven does confirm—incrementally—that all ravens are black. But, it confirms it just the teeniest little bit—not as much as

\(^{12}\)Bayesianism backs the HD model up on this; it too has This emerald is green \lor No emeralds are green confirming All emeralds are green.

\(^{13}\)Bayesianism backs the HD model up on this; it too has This emerald is green confirming All emeralds are red apart from this green one.

\(^{14}\)By their fruits you shall know them (Matthew 7:16)

\(^{15}\)Alternatively, by those of $H \& K$’s parts that are not included in K alone.

\(^{16}\)
CONFIRMATION AND VERISIMILITUDE

85

a black raven does. The idea was apparently first suggested in 1940 by the Polish logician Janina Hosiasson-Lindenbaum (Hosiasson-Lindenbaum [1940]). A randomly chosen item is likelier non-black than a raven, hence we sample a larger portion of the counterexample space by looking at ravens. Hempel in his response to Hosiasson-Lindenbaum asked an obvious question which has never been taken up: "[I]s this last numerical assumption [that non-black things greatly outnumber ravens] warranted in the present case and analogously in all other "paradoxical" cases?" He is worried that the paradox could still arise if a randomly chosen item were just as likely a raven as non-black.

This is hard to imagine, so consider a different (made-up) example. H says that Charged particles lack spin—they are, shall we say, "poised." The numerical assumption is, a randomly chosen particle is likelier neutral than poised.

Well, but it’s our example; we can stipulate that the assumption is false, indeed that there are exactly as many charged particles as spinny ones. Doesn’t it still seem that a charged, poised particle confirms Charged particles are poised more, or better, than a spinny neutral one? One can even perhaps imagine that Charged particles are poised and Spinny particles are neutral are two laws, each with its own physical rationale. The first is like Cheaters never prosper, on the theory that there is something about cheaters that it—they are found out and ostracized, say. The second is like The prosperous never cheat, on the theory that there is something (else) about prosperers that keeps them honest—they have no motive for cheating, maybe, on account of their prosperity.

If the paradox still arises when a generalization’s contrapositive is statistically indiscernible from it and just as nomologically worthy, then we need an approach that does not require us to pick winners. Hempel mentions one briefly:

Perhaps the impression of the paradoxical character of [these cases] may be said to grow out of the feeling that the hypothesis that All ravens are black is about ravens, and not about non-black things, nor about all things (? , 17).

One generalization is about charged particles. How could a neutral particle tell us about them? The most it can accomplish by being neutral is take itself out of the running for the role of counterinstance; counterinstances have to be charged. The other is about spinny particles. A poised particle can serve, again, only as a thwarted potential counterexample: it does not witness the possibility of a spinny particle that is charged.

17[The] claim that “All nonblack things are nonravens” is not projectible needs a closer look ... Even granting that the predicates here are ill entrenched, this seems to illustrate no general principle. Surely ‘nonmetallic’, ‘noncombustible’, ‘invisible’, ‘colorless’, and many other privative predicates are well entrenched. Furthermore, it should be noted that a privative predicate will be as entrenched as any of its coextensive predicates” (Scheffler and Goodman [1972], 83).
CHAPTER 6

How could these subtleties matter to confirmation, you might ask? Confirmation is to do with probability, and statements true in the same circumstances are equiprobable. The answer is that the statements’ parts may not be true in the same circumstances, and inductive evidence has got to probabilify parts. *No Fs are Gs* and *No Gs are Fs* differ inductively, by differing mereologically; they differ mereologically, by differing in what they’re about.

6.6 PARTS AND INSTANCES

Rudy supposedly confers likelihood on the parts of *Ravens are black*, but not the parts of *Non-black things are not ravens*. If the parts are distinct, and have their likelihood controlled by different factors, it is hard to see how the wholes can remain equiprobable—as they must given their logical equivalence.\(^{18}\) This puts pressure on *Ravens are black* to share its parts with its contrapositive. Which destroys the proposed explanation of confirmational differences in terms of mereological differences. I reply that the two generalizations have *matched* parts, agreeing in probability but not inductive significance. I rely here on the treatment of quantifiers in section 4.4, which you might want to review.

What is said by *All ravens are black*? One could treat it as the first-order generalization \(\forall x (Rx \rightarrow Bx)\), equivalently, \(\neg \exists x (Rx \& \neg Bx)\). But that confuses the role played by something’s non-raven-hood in the truth of *All ravens are black* with that played by Rudy’s blackness. Non-ravens help to determine what it *takes* for all the world’s ravens to be black. Black ones are relevant not to the *identity* of the demands but how far the world goes toward meeting them.

A semantic analogue of Belnap’s conditional assertion operator was developed in section 4.4. Bx supposing that Rx, written \(Rx \uparrow Bx\), is true in the same worlds as \(Rx \rightarrow Bx\). But the reasons differ. One is true because \(x\) is either not a raven or black. The other is true, should \(x\) be a raven, because \(x\) is black. Otherwise it is *vacuously* true—true not because its demands are met, but because it doesn’t make any. Explicitly, \(Rx \uparrow Bx\) is

\[
\begin{align*}
\text{true for the reason(s) } & \text{ Bx is true, should Rx and Bx be true} \\
\text{false for the reason(s) } & \text{ Bx is false, should Rx be true and Bx false} \\
\text{true for no reason at all, should Rx be false}
\end{align*}
\]

Corresponding to the two ways for \(Rx \uparrow Bx\) to be true, there are two ways it might gain in probability. One kind of evidence lowers pr\((Rx)\), thus boosting the chances of \(Rx \uparrow Bx\) being vacuously true. Another kind leaves pr\((Rx)\) unchanged while lowering that of pr\((Rx \& \neg Bx)\), thus boosting the chances of \(Rx \uparrow Bx\) being *substantively* true. There is a corresponding distinction at

\(^{18}\)Thanks here to Frank Arntzenius and John Hawthorne.
the level of generalizations. White socks increase \(\text{pr}(\forall x (Rx \Rightarrow Bx)) \) by making more of its content trivial—by cutting into what it (non-trivially) says. A black raven does it by making the “real” part(s) more probable.

The problem was this: *Ravens are black* needs, on the one hand, to have different parts than *Non-black things aren’t ravens*. Otherwise we can’t explain their inductive differences in the way proposed. They should on the other hand have the same parts, lest their probabilities be driven apart by evidence bearing on the parts only of, say, *Ravens are black*.

With virtual parts distinguished from real ones, we can find a synthesis. \(Rx \Rightarrow Bx \) (for a given \(x \)) has a counterpart \(\neg Bx \Rightarrow \neg Rx \) that (i) agrees with it in probability, but (ii) with substantive and trivial likelihood interchanged. As the chances rise of Rudy being (substantively) black if a raven, they rise as well of its being (trivially) a non-raven if non-black. As the chances rise of Betty being (substantively) not a raven if not black, they rise of its being (trivially) a raven if black. The process repeats at the level of generalizations: Rudy’s effects on the probabilities of \(\forall x (Rx \Rightarrow Bx) \) and its contrapositive are the same. It’s the mechanism that is different. Rudy confirms what \(\forall x (Rx \Rightarrow Bx) \) says, while reducing what \(\forall x (\neg Bx \Rightarrow \neg Rx) \) says.

The following analogy, though it overstates the situation, has the virtue of being memorable. Zsa Zsa Gabor is supposed to have found a way to keep “her husband” young and healthy: remarrying every few years. No individual is made younger by this process, rather “her husband” acquires younger referents. Hempel’s way of making “the hypothesis that ravens are black” pervasively likelier is similar: “the hypothesis” becomes likelier by acquiring a likelier referent. This is at least a neglected aspect of Hempel’s paradox.

6.7 VERISIMILITUDE

Confirmation is tied up with the aims of science; we want our beliefs to be as close as possible to the truth, and believing confirmed hypotheses is supposed to help us achieve this. But closeness to the truth has another aspect that confirmation theory is blind to. We want to maximize the amount of truth we believe and minimize the amount of falsehood.

Popper was famously pessimistic about the first aim; he emphasized the second. Science progresses, not when our theories are better confirmed, but when they achieve greater verisimilitude. His initial definition, with \(X \) and \(Y \) ranging over theories, and \(X \)’s truth-content \(X^T \) (false-content \(X^F \)) defined as the set of its true (false) consequences, is this:

\[
X \text{ is at least as truthlike as } Y \text{ iff }
\]

19Hare [2007]

20"I intend to show that while we cannot ever have sufficiently good arguments in the empirical sciences for claiming that we have actually reached the truth, we can have strong and reasonably good arguments for claiming that we may have made progress toward the truth" (Popper [1972], 58).
\[Y^T \subseteq X^T: \text{ any truth implied by } Y \text{ is implied also by } X, \]
\[X^F \subseteq Y^F: \text{ any falsehood implied by } X \text{ is implied also by } Y \]

\(X \) is more truthlike than \(Y \) if in addition \(Y \) is not as truthlike as \(X \), that is, one of the above-mentioned inclusions is strict.

Popper’s definition has some desirable features. Among true theories, verisimilitude goes with logical strength. A false theory cannot be as close to the truth as all true ones.\(^{21}\) But the definition is hopeless.

Suppose that \(X \) and \(Y \) are false and that neither implies the other. Then each has truth-content lacked by the other; \(X \) alone implies \(Y^T \to X^T \), and \(Y \) alone implies \(X^T \to Y^T \) (Tichý [1974], Miller [1974]). False theories are thus left completely unranked by Popper’s proposal. They are not in most cases even ranked lower than their negations, which are true. Suppose that \(X \) is true, and let \(Z \) be a truth that it does not imply. \(X \) does not imply \(X \to Z \) either, but \(X \)’s negation does imply it, by virtue of contradicting the antecedent. \(X \to Z \) is thus a truth implied by the falsehood \(\neg X \) but not the truth \(X \).\(^{22}\)

Attention has turned in recent years from content-oriented theories, like Popper’s, to the likeness approach: \(X \) has greater verisimilitude than \(Y \) to the extent it holds in worlds closer to actuality. The problem here is that there are any number of ways to combine the distances of individual worlds from ours into a measure of how far the set of them is from our world (Niiniluoto [1987]). If one thinks of individual worlds as each casting a vote, it becomes an aggregation of judgment problem. Arrow’s theorem suggests there may be no fully satisfactory way of doing it (Zwart and Franssen [2007]).

Popper went wrong, arguably, in identifying \(X \)’s truth-content with its true consequences (Gemes [2007]). Suppose we define it rather as the sum of \(X \)’s true parts. Popper’s definition then becomes

\(X \) is at least as truthlike as \(Y \) iff

\begin{itemize}
 \item \(Y \)’s true parts are all implied by true parts of \(X \), and
 \item \(X \)’s false parts are all implied by false parts of \(Y \)
\end{itemize}

This doesn’t quite work, however. Suppose \(X = P \& Q \) and \(Y = Q \), where \(P \) is true and \(Q \) is false. \(X \) should come out ahead since it adds a true conjunct. But it has a false part not implied by \(Y \), Gemes observes, namely itself. This seems a cheat. After all, what’s false about \(P \& Q \) is \(Q \), and \(Q \) is part of \(Y \). A theory’s false-content is really made up of its wholly false parts—the ones with no non-trivial true parts buried within. (True parts are wholly true automatically.)

\(^{21}\)If \(Y \) is false, it is further from the truth than \(Y^T \). Proof: \(Y \)’s truth-content is included in that of \(Y^T \), because it is \(Y^T \). \(Y \)’s false-content strictly includes that of \(Y^T \), for \(Y^T \)’s false-content is empty; truths don’t imply falsehoods.

\(^{22}\)Gemes [2007]
CONFIRMATION AND VERISIMILITUDE

X is at least as truthlike as Y iff

Y’s wholly true parts are implied by wholly true parts of X, and
X’s wholly false parts are implied by wholly false parts of Y

A kind of verisimilitude that this perhaps misses involves differences in accuracy. *Light travels at a hundred miles per hour* is further from the truth than *Light travels at a million miles per hour*. Does the second underestimate have a true part not implied by the first underestimate? *Light travels at least a million miles per hour* has the right sort of flavor, but it may be doubted whether travelling at least n miles per hour is included in travelling exactly n miles per hour. This is in fact the tip of a scary iceberg that I would rather avoid just now.

Another arguably unwanted feature of our account is that logically equivalent hypotheses can be at different distances from the truth. *All men are mortal* has plenty of truth in it. It contains, for instance, the truth that *Socrates is mortal, supposing him to be a man*. *Immortals are never men* has very little truth in it. Certainly it does not contain anything to imply the aforementioned truth about Socrates. *All men are mortal* is thus apparently more truthlike than *Immortals are never men*, though the two hold in the same worlds. I am not sure if this is the right result.

6.8 SUMMING UP

Logical subtraction has a role to play in confirmation theory, via the notion of surplus content. Subject matter does, too, via the notion of content-part. Content-part lets us define a new type of evidential relation; E pervasively probabilifies H if it probabilifies “all of it,” meaning, H and its parts. This helps with the tacking and raven paradoxes. Equivalent generalizations can be about different things, which affects their evidential relations. Inductive skeptics don’t care about confirmation, but they derive some benefit too, for they care about verisimilitude—one theory having more truth in it than another—and the truth in a theory is made up of its true parts.
Chapter Seven

Knowing That and Knowing About

7.1 INTIMATIONS OF OPENNESS

If one statement or claim implies another, and the first is clearly true, then one would expect the second to be clearly true, too. Controversy should not erupt between the premises and the conclusion of a valid one-premise argument. And yet sometimes the weaker statement does seem, if not controversial, then at least harder to know than the stronger one. Examples.

(Frege) The number of Fs = the number of Gs. So there are numbers.
(Moore) I have a hand. There are physical objects
(Nozick) I am sitting by the fire. I am not a bodiless BIV.
(Dretske) That is a zebra. So it’s not a cleverly disguised mule.
(Kripke) I turned off the stove. Evidence that I didn’t is thus misleading.
(Cohen) That is a red wall. So, it is not a white wall bathed in red light.
(Vogel) I will teach logic next year. Lightning won’t kill me in the meantime.

To throw my own example into the mix, Alma watches Usain Bolt win the gold on TV, and reads about it the next day in the newspaper. The evidence she gets from these sources does not address the issue of what will become, in the next eight years, of Bolt’s refrigerated blood sample. If tests reveal that he had been using a banned substance, he will be retroactively disqualified. Alma does know that Bolt is the winner, it seems. But does she know that tests won’t be devised in 2018 which retroactively disqualify him?

These look like counterexamples to closure, the principle that a known proposition’s consequences must themselves be known. Never mind, for now, whether the examples are genuine. What there does seem to genuinely be is a phenomenon of apparent closure violations. Either we feel the pull ourselves, or can tell when it is apt to be felt by others. There is something here that tempts us to think that closure is violated, whether we give in to the temptation or not. Part of it is that the transitions seem ampliative. Q goes beyond P, not in what it asks, perhaps (P implies Q, after all), but

1These are in argument form only for rhetorical effect. The issue is not supposed to be knowability on such and such a basis. The existence of numbers strikes us a harder question than whether the number of stars is prime, quite apart from any inferences we might be tempted to undertake. I am much clearer that I turned the stove off than that contrary evidence is misleading, even if the entailment never occurs to me.
what it addresses itself to.

Kripke in *Naming and Necessity* had a notion of appearances, or intuitions, of possibility—IPOs. An IPO is less trustworthy, he reasoned, if we can explain it without supposing it to be true. I want to speak in a similar spirit of intuitions, or intimations, of openness—IONs.²

A few philosophers have taken IONs at face value. Nozick and Dretske are the people usually mentioned. You know that \(P \), in Nozick’s view, only if your belief that \(P \) is sensitive to whether \(P \) is true; had it been false, you would not have believed it.³ You “would have noticed,” if \(P \) were false. You would have noticed, for instance, if you were doing handstands rather than sitting. You would not have noticed, if you were a brain in the right kind of vat. You would have noticed, if the number of Martian moons had been different, but not if there was no such entity as the number of Martian moons. You would not now expect to be teaching logic next year, if you were going to be on leave; teaching assignments are settled far in advance. The course that lightning takes is more of a last minute thing. You would not have seen it coming.

This sort of view has fallen so far out of fashion that we may forget its advantages. Alma believes, quite rightly, that she is not going to win the lottery. She has plenty of evidence on the matter. Why does she fail to know? Her belief would have been the same, even if she were about to win. Smith rightly believes that someone in his office owns a Ford, on the basis of seeing Nogot driving around in a rented Ford; the real Ford-owner is Havit. Smith’s belief doesn’t constitute knowledge, because it would still have been there if Havit had sold the Ford, or taken a different job. Of course the skeptic is unanswerable! He is right; the bizarre-seeming hypotheses he suggests are not known to be false. How in light of that can we go about our daily business? Our daily business turns on the truth of lightweight propositions like *I am sitting*, which we do know. Part of what makes the anti-skeptical consequences heavy is that we are not as sensitive to their possible falsity as to that of their lightweight impliers.

7.2 THE UNDENIABILITY (?) OF CLOSURE

The current view, maintained by just about everyone, is that IONs pose no real threat to the closure principle. The proper reaction is not to renounce closure, but to look for an explanation of how it can *seem* to fail in some cases. Even if \(Q \) is known, there are lots of reasons why it might *seem* more precarious than \(P \). Perhaps

1. \(Q \) is not known *on the basis of* \(P \); it had to be known beforehand
2. \(Q \) is not super-known, this being the relation “knows” comes to express

²Knowledge is open if it is not closed.
³For Dretske it’s your evidence that should be sensitive to whether \(P \), rather than your belief.
3. we don’t know that Q is known
4. the knowledge is unearned; we have no real evidence for Q
5. epistemic anxiety prevents us from fully believing that Q.

Whatever the merits of this or that attempt to explain IONs away, some such explanation has got to work, it is felt, because there is no good way of denying closure.

What would be a “good way of denying” closure? A principle we have so much faith in cannot just be thrown under the bus. A good way of denying it would tell us what is right in the principle—call that the defensible core—and explain how the remainder can be done without.

One problem is that we have no idea of what the defensible core could be. All known technologies for containing closure wind up either strangling it in the cradle, or leaving too much of it in place. The best known technology is Nozick’s, so let’s look again at that. Nozick thinks closure ought to fail when Q is a skeptic-baiting consequences of some evident truth. His theory seems at first to deliver this result, as just discussed. I would not have believed I had hands, had they had simply gone missing, but my beliefs would be in relevant respects unchanged, were I a brain in a high enough quality vat.

But, although this is perhaps an acceptable violation, the theory also makes for egregious violations (Kripke [2011b]). One can know that there is a red barn in the field, without knowing there is a barn there! This will be the result if the closest alternative to a red barn is a green one, while the closest alternative to a barn is an excellent fake. The theory makes as well for egregious non-violations of closure (Hawthorne [2005]). I may not know, on Nozick’s view, that I am not a brain in a vat, but I do know that I am not a sleepy brain in a vat, since I would realize it, if I were sleepy, which is how the envisaged possibility would come about. This is the sort of heavyweight knowledge that we are not supposed to possess.4

A second problem is that the defensible core would have to be very weak, since he full principle comes roaring back on modest assumptions (Kripke [2011b], Hawthorne [2004]). Two such closure-reinstating assumptions are Addition and Distribution:

\[\text{[Ad]} \] S knows that P, and competently infers $P\lor Q \Rightarrow S$ knows that $P\lor Q$.

\[\text{[Di]} \] S knows that $P\land Q \Rightarrow S$ knows that P and that Q.

Either of these does the job, given the obvious-seeming Equivalence principle:

\[\text{[Eq]} \] S knows that P, P is a priori equivalent to $Q \Rightarrow S$ knows that Q.

To see how it works with Distribution, let Z and M be That animal is a zebra and That animal is a cleverly painted mule.

4Both sorts of egregiousness have the same source: sensitivity to R ensures sensitivity to any $R&S$ such that R fails in nearer-by worlds than S. In Kripke’s example, R is It is a barn and $R&S$ is It is a red barn. In Hawthorne’s example, R and S are I am not sleepy and I am not a brain in a vat.
CHAPTER 7

1. Alma knows that \(Z \) [given]
2. \(Z \) a priori entails \(\neg M \) [given]
3. \(Z \) is a priori equivalent to \(Z \& \neg M \) [Logic, (2)]
4. Alma knows that \(Z \& \neg M \) [Eq, (1,3)]
5. Alma knows that \(\neg M \) [Di, (4)]

Closure would have to be severely restricted to avoid this argument. And yet (this is the third problem) to restrict it at all has absurd results. If \(Q \) is harder to know that \(P \), then deduction can lead us astray—taking us from known premises to unknown conclusions—even when properly carried out. Kripke used to bring out the strangeness of this by exclaiming, in the course of some logically irreproachable line of reasoning, “Oh no, I just committed the fallacy of logical deduction!” Do we really want to add valid reasoning to the list of tempting fallacies? No one can take this seriously.

7.3 IMMANENT CLOSURE

Now we see why the closure debate is found confusing. One side—the losing side, at present—insists on various intuitively vivid anomalies. The other side does not deny the anomalies! They just refuse to be cowed by them. Closure-denial appears to them a hysterical overreaction to one sort of data point. A full account of these matters should take note of all the data, including, to begin with,

1. closure’s intrinsic plausibility
2. the strategies for explaining the counterexamples away
3. the feeling that \(Q \) cannot “say more” than \(P \) if it is logically weaker
4. the egregious violations point (the red-barn example)
5. the egregious non-violations point (the sleepy vat-brain)
6. the knowledge-preservingness of deduction
7. the proof of closure from innocent-seeming assumptions.

A word first about the innocent-seeming assumptions. Addition and Distribution are about similarly basic transitions: disjunct-adding in the one case, conjunct-dropping in the other. Looking back, however, they are not formulated in quite the same way. Addition says that one knows \(P \lor R \), on competently inferring it from \(P \). Distribution does not say that one knows \(P \) on competently inferring it from \(P \& R \). This makes good intuitive sense. To know that \(P \& R \), you should know \(P \) already, whereas there is no requirement of first knowing that \(P \lor R \) before you count as knowing that \(P \).

The difference in formulation suggests there might be two forms of closure at issue. Some conclusions are such that you should already know them, to know the premise. With others, you are assured of knowing the conclusion
only if you engage in some reasoning. The first form might be called *immanent* closure, the second *transcendent*. Let’s start with the first. What sort of consequence is it that we know “in” knowing that P, as opposed to being in a position to know it?

The idea behind *Distribution* is that Q should be a conjunct of P. But that way of doing it is too narrow, and assuming the *Equivalence* condition, also too broad. Too narrow: To know that there are red barns, you should know that there are barns. But it is hard to think of an R such that *There are red barns* is *There are barns* conjoined with R. Too broad: Not any old consequence of P has to be known “already.” But any consequence is a conjunct of something logically equivalent to P, viz, $P \& Q$. Immanent closure thus fails to draw the intended distinction, if we formulate it syntactically in terms of conjunction.

A generalized, desyntacticized analogue of the relation $Q \& R$ bears to Q seems called for here. It sounds like a job for logical inclusion. A logical part is something like a "deep conjunct" of its containing whole. This helps with the first problem, since *There are barns* is included in *There are red barns*. It helps with the second problem as well, if we think of inclusion as “seeing through” a sentence’s logical structure to its actual reasons for being true. The condition we want is

$$(IC) \text{ If } S \text{ knows that } P, \text{ and } Q \text{ is part of } P, \text{ then } S \text{ knows that } Q.$$

The principle might equally be called *topical* closure, given how we defined inclusion. If Alma knows that P, she knows those of its implications that do not change the subject.

7.4 SAYING MORE

IONs evidently do change the subject. *That animal is a zebra* is not about painted mules. *I am sitting* is not about brains. *I turned off the oven* is not about evidence. *The wall is red* is not about colored light. *Bolt won the gold* is not about blood samples. If one changes the example to eliminate this feature, Q no longer seems harder to know. *Bolt won the gold and Blake the silver, so Blake won the silver* is quite free of the difficulties besetting Bolt won the gold, so he will not be disqualified. IONs are *ampliative*, not truth-conditionally, but with respect to their aboutness properties. Q raises different issues, not contemplated in P. It is Q’s claims about these additional issues that make it harder to know.

I grant, of course, that Q is in one respect easier to know. A weaker hypothesis holds in a larger region of logical space, and it is easier to locate ourselves in a larger region than a smaller one. But the shape of the region matters, too. The not-a-brain-in-a-vat region is not as unified. It has jagged edges, newly exposed flanks...you pick the metaphor. A jagged region is not as defensible as a smooth one.
This is all very picturesque. But picture thinking takes us only so far. One would like to spell out the mechanism whereby Q’s not being part of P makes it additionally vulnerable. Q is a mere, or unincluded, consequence of P, just if it has new ways of being true—“new” meaning, not implied by any way for P to be true— and/or new ways of being false—not among Q’s ways of being false. The question is, why would these make Q more epistemically vulnerable? I don’t have a very good answer at present, especially on the truthmaker side, but let me offer the following as a proof of concept.

A new way for Q to be true is like a disjunct that is not implied by any disjunct of P. It might just be tacked on beside P’s disjuncts, but in cases of interest, most of Q’s disjuncts are new, perhaps all; they are not unfinished ways for P to be true. So, for instance, what are the ways of not being a painted mule? Being an unpainted mule, or a lion, or a toaster, etc. Being a lion or toaster is not halfway to being a zebra. How might evidence against the moon landing be misleading? The affidavit was forged, the “confession” was a joke, and so on. Confessing on a dare to faking the moon landing is not a way of landing on the moon, nor are there ways of landing on the moon that necessitate such a confession.

This is relevant to knowledge insofar as each new disjunct is a new opportunity to believe Q for the wrong reasons. You know that you turned off the stove (P), by virtue of remembering the event. What about the dogmatic implication Q that counterevidence is misleading? There were ten witnesses, let’s say, and the counterevidence is drawn from their reports. One way for Q to be true is for the first witness to testify against you. Another way for Q to be true is for the first two witnesses to testify against you. And so on. You have got to suppose that the number is small, since as it grows so does the likelihood you are misremembering. You cannot afford to be neutral about how Q is true. As we know from Gettier, though, mistakes on this score can be knowledge-destroying (Gettier [1963]). You are right to believe that Q is true, but, if you are sufficiently in the dark about how it is true—about how things stand with respect its subject matter— then you don’t know that Q. The possibility of not knowing that Q may well sap your confidence in Q itself.

Or take Moore’s refutation of idealism: I have a hand, so there are material objects. Of course, my belief in material objects is not keyed to my hand in particular. I am impressed, too, by the dog’s bowl, the President’s ears, Mount Fuji, Venus, etc. No harm in that, you may say, since these things exist as well. But the problem was to make sense of how Material objects exist could be additionally vulnerable. The surfeit of potential instances ironically raises the bar, by multiplying the opportunities for mistakes about how and why there are material things. If hands are real but planets are not, that jeopardizes my knowledge of material objects more than my knowledge of having a hand.

5Recall that falsity-makers for the part are among (not only implied by) falsity-makers for the whole. If the implication were proper, Q’s falsity-maker would be stronger than needed to falsify P.

The threat posed by new ways for Q to be false is more familiar. They are new counterpossibilities for the knower to address. I will speak generically of being “on top of” a counterpossibility, because the details don’t matter; we can afford to abstract away from them. A new way of being false is, as a purely structural matter, one more thing for the knower to be on top of.\footnote{Q’s ways of being false are, let us say, Q_1, ..., Q_n. Alma is on top of Q_k, on a sensitivity-type theory, if she would have noticed, or had different evidence, had Q_k obtained. She is on top of it, on a relevant alternatives theory, if she can rule Q_k out, whatever exactly that may involve (Stine [1976], Lewis [1996]). A safety-type theory might see the counterpossiblitites as each dangerous in its own way. Alma is on top of Q_k if she could not easily have been wrong in the way it suggests. She is on top of Q_k, on a probabilistic theory, if the chance of believing that Q_k conditional on Q_k, is low (Roush [2009]). She’s on top of Q_k, on an explanatory theory, if the hypothesis that Q_k fails to explain how she could wind up believing Q despite its falsity (Cross [2010]).}

Now, to say that Q gives us new battles to fight, if it isn’t contained in P, is not to say we don’t know it; the battles might be winnable (section 7.8.). The advantage of parts is that they already have been won. We showed ourselves to be on top of the counterpossibilities to Q, when we dealt with the counterpossibilities to P.

7.5 HYPERINTENSIONALITY

Immanent closure has got be weaker than (full, regular) closure; otherwise we are just spinning our wheels. It is not clear how it can be weaker, though, given its similarity to a principle—knowledge transmits through to conjuncts (\textit{Distribution})—that was shown to blow up into closure in section 7.2. Let’s look again at the argument:

1. Alma knows that Z [given]
2. Z a priori entails $\neg M$ [given]
3. Z is a priori equivalent to $Z \& \neg M$ [Logic, (2)]
4. Alma knows that $Z \& \neg M$ [Eq, (1,3)]
5. Alma knows that $\neg M$ [Di, (4)]

\textit{Distribution} is used only once, to assure Alma of knowing that $\neg M$ if she knows that $Z \& \neg M$. Immanent closure provides us the same assurance, however! For it assures us of knowing parts, and $\neg M$ is part of $Z \& \neg M$. Immanent closure is thus every bit as sufficient for (full, regular) closure as \textit{Distribution} was.

Now, the fact is that \textit{Distribution} is \textit{not} quite sufficient for full closure—the argument relies as well on \textit{Equivalence}. But \textit{Equivalence} is apt to seem obvious. How can Alma know just one of a pair of a priori equivalent propositions? That would be, in the case of interest, to know that Z (the animal is a zebra), without knowing that $Z \& \neg M$ (it’s a zebra and not a disguised mule), though Z implies $\neg M$ and is thus equivalent to $Z \& \neg M$.

\footnote{Z and M are \textit{That animal is a zebra} and \textit{That animal is a cleverly painted mule}.}
But, as we know, equivalents are liable to differ in what they're about, which can drive a wedge between them epistemologically. \(Z \& \neg M\) says more than \(Z\), their truth-conditional equivalence notwithstanding. It stakes a larger claim and is more open to question. If this is right, then the Kripke/Hawthorne argument does not make trouble for immanent closure. Alma knows that \(Z\), but that does not tell her that that \(\neg M\), since not to be a disguised mule is a mere consequence, not a part, of being a zebra. Not being a disguised mule is part of being a zebra and not a disguised mule. Alma would by immanent closure know that it was not a disguised mule, if she knew it was the not-a-disguised-mule sort of zebra. She would know that too, if equivalents were equi-knowable. But, the suggestion is, they are not.

Knowledge as we are beginning to conceive it is subject-matter sensitive. This should not strike anyone as outrageous; subject-sensitivity is of a piece with focus- and question-sensitivity, which are widely acknowledged and much discussed phenomena (Dretske [1972], Beaver and Clark [2009], Schaffer [2007]). But it would be good to have some examples.

Students will say, after a first encounter with Descartes's dream argument, that they might, for all they know, be dreaming. They will then often remark, as though building on the previous point, that their own dreams are, as a matter of fact, not as lifelike as the experience they are enjoying now. (I feel the pull of this myself). They know that

My dreams are not this lifelike.

But they admit to doubts about

Appearances (of mine) that are as lifelike as this are not dreams.

And yet the two are logically equivalent: \(\neg Ds are L\) is equivalent \(\neg Ls are D\). Pressed for an explanation, we might distinguish the hypotheses as follows. One concerns my dreams and how lifelike they are; the other is about experiences like this and how liable they are to be dreams. I feel more attuned to the first issue—the felt quality of particular dreams—than the second—the metaphysical nature of particular appearances. If the dream had been more vivid, I might have noticed. If present appearances, their lifelike qualities held fixed, were a dream, it all would have seemed just the same.

Imagine yourself in fake barn country. All of the many barns are red, and so are all of the many fake barn. You have seen most if not all of the barns, but are, as a matter of happenstance, yet to lay eyes on a fake. You know, I take it, that all of the barns are red. (Imagine someone questioning this on the ground that, as you haven't checked any of the non-barns, one of them might be red.) We need only a weaker claim: you know that

At least one of the many barns in this area is red

Now turn it around. Do you know that
CONFIRMATION AND VERISIMILITUDE

At least one of the many red structures is a barn?

It seems clear that you don’t; thingst would look the same either way. To know that at least one \(F \) is \(G \) is easier than knowing that at least one \(G \) is \(F \), if you are an excellent judge of \(G \)-ness but have trouble making out what is \(F \). And yet one of the \(F \)s is \(G \) just if one of the \(G \)s is \(F \).

7.6 WAYWARDNESS

Knowledge-attributions care about subject matter, over and above truth-conditions. They take note of how \(P \) is true or false in various worlds, not only which worlds it is true or false in. Of course, one doesn’t want to complicate propositions unless it is really necessary. Shouldn’t we be trying harder to resist the introduction of “ways” into the semantics of knowledge claims?

I am not in a position to say that resistance is futile. But it comes to seem heroic—a lost cause—when we broaden our focus a bit. “Waywardness,” as Kit Fine calls it, is a widespread phenomenon (Fine [2012]).

You will feel better if you eat, the doctor says, and we can assume this is true. Will you feel better, if you eat pie or poisonous mushrooms or dolmades or dirt or rice or rotten fish or etc? Surely not. **You will feel better if you do this or that or the other** carries the implication that you will feel better if you do this, and also if you do that, and also if you do the other.\(^8\) You won’t feel better if you eat poison, therefore you won’t feel better if you eat pie or poison or some other thing. Now, you can’t eat without eating this, that, or the other, and vice versa. It is not a difference in modal profile we are dealing with, but in semantically operative ways of obtaining.\(^9\) The truth-value shift occurs because eating rotten fish is a way for it to be true that you eat rotten fish or some other thing, but not, or not without additional stage-setting, a way for it to be true that you eat.\(^10\)

Believing truths is better than avoiding belief in falsehoods, according to William James. Now let’s throw one more element into the mix: the untruth of what we do not believe. Which is better, to believe truths, or that propositions we do not believe are not true? Again, the first seems better. One wants to extend the attitude of belief to existing truths, not shrink the set of truths until it contains nothing we don’t believe.\(^11\) And

\(^8\)This is nothing special to do with disjunction. **If you had more dogs, you’d be happier**, requires that you’d be happier if you had one more dog, and also if you had two. **If we don’t both sign our names, the contract is invalid** implies that it will invalid if you don’t sign, and also if I don’t.

\(^9\)\(W \) is an operative way for \(P \) to obtain in a particular context if \(Q \), if \(P \) depends for its truth, in that context, on \(Q \), if \(W \). Running this in the other direction gives us a quick, though not infallible, way of identifying truthmakers: \(W \) counts in context as a way for \(P \) to be true if \(Q \), if \(P \) implies, in context, that \(Q \), if \(W \).

\(^10\)Imagine the doctor makes it a relevant way of eating, by steering you toward a table with rotten fish on it. She then makes it false that you will feel better if you eat.

\(^11\)The second goal is advanced by destroying things we don’t understand.
yet, believing all true hypotheses is equivalent to hypotheses’ not being true if we don’t believe them.

Desire-contexts are wayward, too, then, apparently. Wanting all Fs to be G is not the same as wanting non-Gs not to be F, though the one outcome occurs if and only if the other does. President Bush hoped for the day when no child was left behind. He did not hope for the day when no one left behind was a child. He did not hope for a device that turned underperforming children into adults before they could be left behind.

Conditionals and desire attribution are not unconnected.12 A well-known problem with desiderative verbs is how to arrange for the “backgrounding” of content-elements that are treated as given, rather than part of what is wanted, or hoped, or regretted, or what have you. Wanting to catch a spy is not wanting there to be a spy, although it is wanting a thing that cannot happen unless spies exist. Stalnaker and Heim suggest, in this connection, that to desire that \(P \) is to prefer how things would be if \(P \) to how they would be if \(\neg P \).13 Preferring the nearest catch-a-spy world to the nearest don’t-catch-one world is not to prefer spies’ existence, for they exist in both of the worlds just mentioned.14

If this is how we understand desiderative verbs, then the waywardness of desire might be seen as tracing back to that of conditionals. I want to find my lost dog. I do not want to find him dead or alive, though finding him is necessarily equivalent to this. Why this difference? If I found him, that would be better than not finding him. \textit{Find him} occurs here in the antecedent of a conditional, though, where it may not intersubstitutable with \textit{find him dead or alive}. If I found him dead or alive, would that be preferable to not finding him? No, because it would not be better to find him dead. Finding the dog dead is a way of finding him dead or alive, but not a way of finding him. That is why the phrases are not substitutable in conditionals, or hence in desire attributions.

God tells Eve, you may eat as many apples as you like—even infinitely many—apart from this one; this one is from the tree of knowledge of good and evil.15 God does not permit Eve to eat infinitely many apples, \textit{period}, for she is not to eat the bad apple. As we know, though, the two scenarios are equivalent. One apple cannot make the difference between infinitely many and finitely Eve eats infinitely many apples if and only if she eats infinitely many apples apart from the bad one.

God permits \(P \), but not \(Q \), though \(P \) and \(Q \) hold in the same worlds, differing only in their ways of being true. Eating infinitely many apples, including the bad one, is not a way for it to be true that \textit{Eve eats infinitely many apples apart from the bad one}.

12[E]moters and more generally causatives select the subjunctive because their lexical semantics involves counterfactual reasoning" (Schlenker [2005]).
13Heim [1992]
14Humberstone develops another way of exempting undesired content in Humberstone [1987]. Wanting to catch a spy is believing both that there are spies and that it would be good to catch one. See also Schoubye [2011] and Humberstone [1982].
15This is modeled on an example of Kit Fine’s. Assume that the tree of knowledge produces only a single apple.
Many apples but not a way for it to be true that Eve eats infinitely many apples distinct from the bad one. This falls out of the wayward nature of conditionals if Q’s permissibility is explained as: God won’t be angry with you, if Q (Anderson [1958]).

Consider next evidential verbs: show, testify, establish, etc. Al testified that Claire stole the diamonds, but not that it was diamonds she stole. The blood test shows that you don’t have bronchitis; it is (let’s suppose) sensitive only to the viral kind, but bacterial bronchitis is too uncommon to worry about. The test does not show, however, that you don’t have viral or bacterial bronchitis. It would have come back positive, if you had bronchitis, because you would have had the viral kind. It is not the case that it would have come back positive, if you’d had viral or bacterial bronchitis.

Alma catches sight of a meteor streaking across the sky. That it could in principle have burned out in the time it took the light to reach her eye doesn’t bother us very much; it doesn’t stop her from seeing that that there is a meteor up there. But, although the bare, unrealized possibility of its disappearance allows this, does she see that there is a still existing meteor in the sky? This is not so clear to me, since things would have looked the same if the meteor was now gone. Substitute a not very distant star if you like, so that it takes the light a few minutes to get here. Seeing that there is a star on the horizon does, or may, not suffice for seeing that there is a currently existing star on the horizon, though the one outcome obtains if and only if the other does.

Examples like these are not a million miles from standard epistemology. If all we have go on is Al’s testimony, then we do not know that it was diamonds Claire stole, for Al did not speak to that issue. You know that you don’t have bronchitis, because you have been tested, and that is what the test shows. You cannot claim on the same basis to know that you don’t have viral or bacterial bronchitis, since the bacterial sort was never tested for. Knowing that there is a star on the horizon is easier than knowing that there is a still existing star there.

7.7 KNOWLEDGE DESTROYED

If knowledge is subject-matter sensitive, then it is sensitive to whatever the factors are that subject-matter is sensitive to. What are those factors? And do they really have the expected epistemic effects? Let me mention a few possibilities, some of which we have already seen. Imagine we have utterances both of S knows that P and S knows that P’, where P’ is necessarily equivalent to P, but there is a shift, between the two occasions of utterance, in aboutness properties. Maybe

1. P’ contains different words than P

10Schaffer and Szabó [2014]. He has not perjured himself, if it was sapphires.
17Or, more carefully, the expected semantic effect in epistemic contexts?
2. it contains the same words, but differently arranged
3. it is the same sentence, but differently pronounced or uttered
4. it is uttered the same way, but the surrounding conversation is different

An example of the first scenario is where P' adds on a new conjunct Q, which though logically redundant (P implies it) breaks new ground on the subject matter front. P is equivalent to $P \& Q = P'$. I locked the door is about me and the door; I locked the door, and any evidence to the contrary is misleading is about more than that. A redundant adjective will do it as well. A Rolex is a real Rolex and vice versa. But they bring different issues to the foreground. The issue with It's a Rolex is Rolex vs Timex; the issue with It's a real Rolex is Rolex vs knock-off thereof (Hawthorne [2004]). You can see how that might make it harder to know that it’s a real Rolex than that it’s a Rolex.

Next, logically irrelevant changes in word order. Take No cities are as high as 9000ft. This says the same as Nothing that high is a city, but if you asked me how and why they are false, I would answer differently. The first gets us thinking of well-known cities that are at a remarkably high altitude. It is false that no cities are as high as 9000ft because Quito, the capital of Ecuador, is that high. The second gets us thinking about places at a high altitude that turn out to be cities. It is false that nothing that high is a city because the principality of Andorra, famous for its high-altitude skiing, is also in fact a city. Insofar as Quito’s altitude is better known than Andorra’s civic status, No cities are as high as 9000ft is apt to seem more clearly false than Nothing that high is a city.

The third possibility was noted long ago by Dretske (Dretske [1972]). P is Clyde gave me the TICKETS and P' is He GAVE me the tickets. The first marks off worlds where it is tickets he gave me from worlds where it is chewing gum. The second marks off worlds where he gave them to me from worlds where he took them. This makes no truth-conditional difference if the sentences are sitting there all by themselves. But it matters when they are embedded in focus-sensitive contents. Clyde gave ME the tickets by mistake—he meant to give them to Bob—but he did not give me the TICKETS by mistake—tickets are what he was paid for. I regret that Clyde gave ME the tickets— Abby wanted them more—but not that he gave me the TICKETS. My non-regret here could be because I didn’t know it was tickets in the envelope. I knew who the recipient was, but not what was received.

Then finally there is discourse context. No vegetarians are Brazilian gives us negative information about vegetarians’ nationality. You know the vegetarians? They are none of them Brazilian. But consider it as a reply to Tell

18I am being sloppy; we are supposed to be talking about two utterances of the same sentence. (Though, to be completely fair to myself, focus is sometimes thought to be syntactically realized.)

19Schaffer and Szabó [2014]
CONFIRMATION AND VERISIMILITUDE

me about the Brazilians, or as following up on Brazilians are great cattle-ranchers and barbecue-ers. Then it is telling us something positive about a different group’s eating habits, viz. that they eat meat. The subject matter can also be tweaked retroactively by developments after the fact. No vegetarians are Brazilian, and no fruitarians or pescatarians either. Brazilians are all carnivores. To build on a case from section 7.5, we are not as confident of Some barns are red in a discussion of the red structures—whether they are “silos” rather than silos, “barns” rather than barns.

7.8 DEDUCTION

Immanent closure applies only when Q is part of P. It says nothing about the case where Q merely follows from P. And that case is very important. Let it be that I do not have to know “already” that Q. Still, knowing P does presumably put me in a position to know it. So far we have done nothing to provide for this. Deduction is not supposed to be an epistemically hazardous enterprise. To be told that it is not hazardous, when the conclusion is contained in the premise, does not really provide much comfort. It is not as though anyone ever bothers to check that it is part of the premise, before treating the conclusion as known. How could we be so irresponsible? Also, most conclusions are not parts. One needs apparently a second closure principle—“transeunt” closure—to deal with knowledge of conclusions drawn from premises that do not contain them.

The principle will have to be carefully formulated, for conclusions of this sort are not always known, or even believed. This is a point stressed by Harman. Having reasoned her way to Q from P, Alma faces a choice. One option is to accept Q. Or, if Q is unacceptable, she may prefer to abandon P (Harman [1973]). She has a similar option one level up, should she find herself unable to abandon, for instance, I am sitting. She can go with Moore in claiming knowledge also of I am not a brain in a vat, or, with the skeptic in allowing that she might after all not be sitting.

The second approach is more plausible, if falsity-makers hook up in the advertised way with aboutness. Mooreans imagine that I am not a brain in a vat loses some of its subject matter, when it is deduced from I am sitting. Skeptics have I am sitting acquiring new subject matter, as it begins to contemplate non-postural alternatives to standing. I am with the skeptic on this. Which is likelier, that I am not a brain in a vat loses interest in skeptical counterpossibilities, or that I am sitting comes to take an interest in them? Q’s subject matter and counterpossibilities are visited back on P, surely. This is why P strikes us as increasingly doubtful when anti-skeptical conclusions are drawn. It expresses a bigger proposition; a bigger proposition gives us more to be on top of, which makes P harder to know.

20 We on the outside face this decision as well.
21 Discourse context is not limited to what takes place before, and during, the utterance.
This somewhat addresses the problem of knowledge of non-included conclusions. The problem does not arise, if the premise ceases to be known. What about the other case, where \(P \) continues to known after its subject matter grows to include that of \(Q \)? The problem does not arise in that case either, for \(Q \) is no longer a mere consequence; it becomes a part. Knowledge of parts is covered already by immanent closure. A “transeunt” closure principle may not be needed, then. Such a principle is valid only when restricted to cases that are covered by the principle that we already have.

Most fortunately it happens, that since Reason is incapable of dispelling these clouds, Nature herself suffices to that purpose, and cures me of this philosophical melancholy and delirium, either by relaxing this bent of mind, or by some avocation, and lively impression of my senses, which obliterate all these chimeras. I dine, I play a game of backgammon, I converse, and am merry with my friends. And when, after three or four hours’ amusement, I would return to these speculations, they appear so cold, and strained, and ridiculous, that I cannot find in my heart to enter into them any farther.” (Hume, *Enquiry.*)

7.9 KNOWLEDGE RETAINED

Carnap points out the cognitive switch that is pulled when *Numbers exist* is inferred from a humdrum premise, say, *60 has three factors*. The premise, initially established by calculation, grows before our eyes into a metaphysical giant. *I have a hand* takes on a bold new aspect when wielded against the skeptic. Similarly with the other IONs mentioned. \(P \) always seems to blow up into a larger and more challenging claim.

What is going on in these cases? Some say that \(P \)’s domain expands; the proposition now expressed is defined on more worlds.\(^{22}\) I want to try something different. \(P \) has the same truth-values in the same worlds; it is the subject matter that changes. The conclusion’s ways of being false are taken on by the premise, necessitating a reconsideration of that premise. It’s as though a tourist map of Bel Air, indicating where the stars live, were produced in a legal dispute about oil rights and property lines. The map “sees” the same worlds, but is surprised to find itself applied to this sort of issue.

I will write \(P^+ \) for \(P \) with the puffed up subject matter. The BIV worlds might, for instance, be marked out as a distinguished counterpossibility. \(P^+ \) is true/false in the same worlds as \(P \), but in additional ways, with the result that it contains \(Q \) where \(P \) did not.\(^{23}\)

\(^{22}\)Lewis [1996]

\(^{23}\)Really it’s the same sentence on both occasions—only the directed proposition changes—but the new proposition will be given its own sentence. \(P^+ \) says in all contexts what \(P \) says when we infer from it that \(Q \).
CONFIRMATION AND VERISIMILITUDE

Two cases can be distinguished: we know P but not P^+, or we know P^+ in addition to P.

Suppose we know that P^+. Then since Q is contained in P^+, we know that Q, by immanent closure. This is the ordinary case, in which knowledge is preserved under deduction. Knowing that I am sitting gives me knowledge that I am sitting or crouching, because I continue to know I am sitting, even when its subject anti-matter is expanded to include neither-sitting-nor-crouching as a distinguished alternative. To put it in sensitivity terms, I would have noticed, had I been standing or lying down, which is what I do when not sitting or crouching.

Imagine alternatively that P is known but P^+ is not. That knowledge is lost when P grows to include Q suggests that Q is contributing counterpossibilities that we are not on top of. To know what I am sitting says now, I must be on top of the possibility of being a BIV. Since I am not on top of it, I cannot be said any longer to know that I am sitting. I know the thought I am sitting did express, but not the thought it expresses now.

In regular contexts, I know that I am sitting; in skeptical contexts, I seemingly don’t. This cannot not the whole story, for lightweight propositions are, even in skeptical contexts, better known than their heavyweight consequences. I still feel in a better position with respect to I am sitting than I am not a bodiless BIV, when I fail to know that I am sitting. Contextualists who invoke shifting standards have trouble explaining this. Neither proposition is known, judging by higher standards, both are, judging by lower.

The difference is that lightweight propositions retain even in skeptical contexts a substantial known part. Let the original, pre-skeptical subject matter of I am sitting be my posture. The alternatives recognized by my posture, are, say, I am standing, I am crouching, I am lying down, I am leaning, I am doing handstands, I am hanging by my heels, and (as a final catch-all category) “other.” The part of I am sitting that concerns my posture is still kicking around inside, even when the sentence has come to say more.

7.10 SUMMING UP

Seeming closure violations have been met with three main responses: counterfactualism (Nozick), contextualism (Cohen, DeRose, Lewis), and Carnap’s idea that There are numbers is harder to know, because it addresses a trickier sort of question. Our picture has some contextualism in it, since the subject matter of I am sitting changes in skeptical contexts, thereby “destroying our knowledge.” It has some counterfactualism in it, insofar as being on top a counterpossibility is being such that that one would have noticed, had that counterpossibility obtained. It has some Carnap in it, too. When the doubters come round, one takes refuge in the ordinary, “internal,” part of I am sitting, the part that concerns its old, non-skeptical, subject matter. The ordinary part we do know. Backgammon can be played in the
seminar room.
Chapter Eight

Extrapolation and Its Limits

8.1 EINSTEIN’S DOG

Once again, it would be nice if I could explain the topic with examples, but we have to make do with anecdotes. The first concerns a conversation Einstein is supposed to have had with some puzzled citizen.

Citizen: How does the telegraph system work? I don’t see how a message goes down an electric wire.

Einstein: What’s so difficult? Imagine a dog with its head in Moscow and tail in Leningrad. Pull the tail, and the head barks.

Citizen: I’m with you so far, but what about the wireless telegraph? How does that work?

Einstein: The same way, but without the dog.

My second example comes from the 1980 presidential debates between Ronald Reagan and Walter Mondale. Reagan had been showing some ignorance of world affairs. Asked about Valéry Giscard D’Estaing, the then president of France, he said, “I don’t believe I have heard that name.” The moderator asked Mondale if it bothered him that there was so much Reagan didn’t know. “Not really,” Mondale said. “It is not what he doesn’t know that bothers me; it’s what he knows for sure that just isn’t true.” (Borrowed from Will Rogers apparently.)

Is it clear what these stories have in common? In both we’ve got a hypothesis A that implies another one B—pulling the dog’s tail to get its head to bark implies there’s a dog there, and knowing that food stamps are used by welfare queens to buy vodka implies that that is how food stamps are being used—and the two hypotheses together are supposed to determine a weaker hypothesis that is, as we might put it, A stripped of its implication that B. Mondale, for instance, seems to be be worried that Reagan only quasi-knows a lot of what he takes himself to know, where quasi-knowing that P is something like knowing (or “knowing for sure”) that P, stripped of its implication that P.

This kind of implication-stripping, or cutting a content down to size, might be seen as a challenge to analytic philosophy’s traditional self-image. Frege, Russell, and Moore sought to characterize contents of interest “from below,”
by showing how they could be built up out of weaker contents.\(^1\) They never, as far as I know, tried the opposite approach, approaching a content from above by first overshooting the target, and then stripping away unwanted extras. One can certainly imagine reasons for this. Logical \textit{addition} lines up pretty well with conjunction, while logical \textit{subtraction} is somewhat of a mystery. I suspect it’s no accident that Wittgenstein, as he began tearing himself free of the analytic paradigm, found himself wondering about logical subtraction. What is left, he asked, if we subtract my arm going up from my \textit{raising} that arm? What is left if you subtract from the fact that \textit{It hurts!} the fact that it’s you who is suffering.\(^2\)

8.2 LEFTOVERS

Logical subtraction is baffling, but that is not to say we don’t sometimes attempt it. Colloquially it is expressed by phrases like “with the possible exception of Fran” and “only maybe not all at once,” and “barring an act of God” (Von Fintel [1993], Gajewski [2008]). Philosophers talk this way all the time. A statement is lawlike, according to Goodman and others, if it is a law, \textit{except it might not be true}. “We can investigate the world, and man as a part of it, and find out what cues he could have of what goes on around him. Subtracting his cues from his world view, we get man’s net contribution as the difference” (Quine [1960]). Parfit explains quasi-memory in something like the way we explained quasi-knowledge on behalf of Will Rogers.\(^3\) A theory is empirically adequate if it is true, ignoring what it says about theoretical entities. Warrant is whatever “makes the difference between knowledge and mere true belief” (Plantinga [1993]). “A judgment = what is left of a belief after any phenomenal quality is subtracted” (Chalmers [1996], 174). The scare quotes sense of a moral term is the regular sense, minus any implication that the act is thereby commendable (deplorable).

But although philosophers do sometimes engage in the \textit{act} of subtraction, they tend not to reflect on what they are doing. They are \textit{nervous} about it, without knowing exactly why.

That is one reason for looking further at logical subtraction. It is a favorite philosophical tool, at the same time as philosophers have doubts about it. The immediate reason is that leftovers bear on the issue of how far content-parts can be considered \textit{parts}.

Here is what we said in section 3.1: \(B\) is part of \(A\) iff the inference from \(A\) to \(B\) is, first, truth-preserving, and second, aboutness-preserving. Aboutness-preservation was explained as subject-matter inclusion, which

\(^1\)Though Frege saw limits to this approach (Tappenden [1995]).

\(^2\)The best published discussion by far is Humberstone [2000]. See also ?, Fuhrmann [1996], and Fuhrmann [1999].

\(^3\)“Someone’s claim to remember a past event implies that he himself was aware of the event at the time of its occurrence, but the claim to quasi-remember [it] implies only that someone or other was aware of it” (Shoemaker [1970]).
EXTRAPOLATION AND ITS LIMITS

had to do with A and B’s ways of being true or false. Let a decider of hypothesis S be a possible truthmaker for S or a possible falsemaker for it. Then

33 $B \leq A$ iff A implies B and each B-decider is implied by an A-decider.4

From this, we see that content-part has the core properties of a part/whole relation:

- reflexivity: $A \leq A$
- antisymmetry: if $B \leq A$ and $A \leq B$, then $A = B$.5
- transitivity: if $A \leq B$ and $B \leq C$, then $A \leq C$.

How, for instance, do we get transitivity? Each of C’s deciders is bound to be implied by one of A’s, if it is implied by a decider for B, and all of them are implied by deciders for A.

The core properties make content-part a partial order, but that is not enough to warrant use of the term “part”. Later in the alphabet than is a partial order on letters; that doesn’t make ‘z’ part of ‘a.’ The relation sets bear to their subsets is a partial order. But, although the set of elephants and mice has the set of mice as a subset, it is not part of the set of mice.

The problem with later in the alphabet than is that there isn’t anything you can point to as the rest of ‘a’: the part or parts whereby it exceeds ‘z.’ Likewise there isn’t anything you can point to as the extra bit or bits whereby the set of mice exceeds the set of mice and elephants. A relation of parthood should meet the further condition that when x is a part of y falling short of the whole, there is something left over: y has other parts that are disjoint from (share no parts with) x. (Ideally those other parts should get us y back when summed with x.)

Content-parts are properly so called, it seems, only if, in addition to the three conditions above, we have

35 leftover: if $B < A$, then there’s a $C < A$ that is disjoint from B.6

I propose to call this the leftover principle, in honor of Wittgenstein’s question in the Philosophical Investigations (Wittgenstein [1953]):

what is left over if we subtract from the fact that I raise my arm the fact that my arm goes up?

4I mean that each B-decider is implied by an A-decider of the same valence. Truthmakers are implied by truthmakers, falsemakers by falsemakers.

5Here we are treating sentences as identical if they express the same thought. Antisymmetry holds absolutely when framed as a condition on thoughts.

6The official name is Weak Supplementation. Really we should say that there’s a thought $C < A$ that is disjoint from B; there need be no sentence that expresses the thought. I will mostly ignore this and assume a C can be found.
A proper part \(C \) of \(A \) that is disjoint from \(B \) will be called a (logical) leftover. Should it be that there’s a distinguished leftover \(R \) that makes up the difference between \(A \) and \(B \) — \(A \) should hold, for instance, in the same worlds as \(B \& R \) — it will be a candidate for the role of the remainder when \(B \) is subtracted from \(A \), for short, \(A \sim B \).

The fate of content-parts is thus tied up with the existence of logical leftovers and remainders.\(^7\) This is little bit worrying, as we have not even considered the issue, and there is reason to be concerned.

8.3 RECIPE IDEAS

Given an \(A \) that implies \(B \), is there always something that we can point to as what \(A \) adds to \(B \)? The logician in us wants to look for a recipe that delivers a remainder in every case, and by a uniform method. I am going to suggest something like that myself, but what are the proposals that have been made so far? By far the most common is this:

\[A \sim B \text{ is the material conditional } B \rightarrow A \text{}\(^8\)

Call it the horseshoe theory, since the material conditional is usually written \(B \supset A \) (\(B \)-horseshoe-\(A \)). An argument in its favor was given by J. L. Hudson in “Logical Subtraction” (Hudson [1975]).\(^9\) He asks us to think first of numerical subtraction. \(a - b \) is the number \(c \) which, when added to \(b \), gives us back \(a \). Logical subtraction should work, as far as possible, like that. \(A \sim B \) should be the \(C \) such that \(B \& C \) is equivalent to \(A \).

Problem, however: there is no such thing as “the” \(C \) that makes that equation true. Any number of \(C \)s are equivalent modulo \(B \) to \(A \). So, for instance, \(A \) is equivalent modulo \(B \) to everything of the form \(D \equiv A \), where \(D \) is implied by \(B \). And also to everything of the form \(B \& D \), for any \(D \) intermediate in strength between \(A \) and \(B \rightarrow A \).

Since the equation is satisfied by lots of \(C \)s, \(A \sim B \) will have to be meet some further condition. \(A \sim B \) is a \(C \) that is somehow special. This presumably means, it is either the strongest statement which combines with \(B \) to yield \(A \), or the weakest such statement. The strongest is \(A \) itself. It is a terrible candidate for the role of \(A \sim B \)! We want a \(C \) that picks up where \(B \) leaves off, not one that takes us on a second trip across ground already covered.

\(^7\)The issue up to now has been subtraction of content-parts. The next section brings in implications that may or may not be parts. Eventually, starting in section 10.4, we look at subtrahends that may or may not be implications.

\(^8\)Subtraction here is a sentential connective, like conjunction.

\(^9\)Other supporters include Hempel and Carnap & Bar-Hillel. Hempel wants to identify “that part of the information contained in \(H \) which is not contained in \(E \), and which thus goes beyond what has been previously established. This ‘new’ information contained in \(H \) is expressed by the sentence \(H \lor \neg E \)” (Hempel [1960]). Bar-Hillel identifies “the information conveyed by a statement \(J \) in excess to that conveyed by some other statement \(I \)” with “the content of \(I \rightarrow J \)” (Bar-Hillel and Carnap [1953]).
That leaves the weakest \(C \) such that \(B \& C \) is equivalent to \(A \). The weakest \(C \) with that property is \(B \rightarrow A \). So, if \(A \rightarrow B \) is to be a statement canonically equivalent modulo \(B \) to \(A \), it should be, Hudson says, the material conditional \(B \rightarrow A \).

The horseshoe theory has much to be said for it; it certainly wasn’t pulled out of a hat. Let’s try it out on an example from propositional logic. \((p \& q) \rightarrow p\), we are told, is \(p \rightarrow (p \& q) \). This is a surprising result. What remains, one would think, after we subtract from \(p \& q \) one of its conjuncts, is the other conjunct, in this case \(q \). Hudson’s candidate, \(p \rightarrow (p \& q) \), is a great deal weaker than \(q \); it is implied by \(\neg p \), for instance, while \(q \) and \(p \) are independent.

That is an intuitive argument, but we can say something more principled. The point of introducing leftovers was to see how far content-parts could be made to satisfy the usual mereological laws. \(A \rightarrow B \) is helpful in this respect only if it is a part of \(A \) that is disjoint from \(B \).

Now, maybe the right sort of \(A \rightarrow B \) cannot always be found; that’s a question for later. The point right now is that it can never be found, on the horseshoe theory, even in the intuitively most favorable cases. Recall that the truth of a part is supposed to confer partial truth on the whole. Does the truth of \(p \rightarrow (p \& q) \) is part of \(p \& q \) reflect favorably in that respect on \(p \& q \)? Not at all, for the conditional might be true because \(p \) is false. That a conjunction is half wrong (one of its conjuncts is false) cannot be thought to make it half right\(^{11} \). \(B \rightarrow A \) cannot in fact ever be part of \(A \), or \(A \) would be partly true thanks to the falsity of one of its implications. The horseshoe theory fails in this respect as badly as it could: it says that the result of subtracting a part is never part of the whole, when it should ideally always be part of the whole.

Of course, some other recipe for constructing remainders might do better. At this point, however, the prospects look poor. There can be a recipe only if remainders always exist. And there appear to be clear counterexamples to such an idea. What does \(\text{Tom is red} \) add to \(\text{Tom is colored} \)? What does \(\text{They danced badly} \) add to \(\text{they danced} \)? What does, to give a more contemporary example, does \(\text{Alma knows that water is wet} \) add to \(\text{Water is wet} \) or, indeed, to \(\text{Water exists} \)\(^{12} \)? It’s a strange sort of part that is inextricable from its

\(^{10}\) Compare set-subtraction. \(X - Y \) should be a \(Z \) whose union with \(Y \) is \(X \). There are many such sets, so we look at the largest and smallest. The biggest is \(X \). \(X \) is a horrible candidate for the role; subtracting \(Y \) from \(X \) should yield a smaller set, not \(X \) again. The smallest \(Z \) such that \(Y \cup Z = X \) is the set of things in \(X \) but not \(Y \). This is how set-remainders are in fact defined.

\(^{11}\) \(p \rightarrow (p \& q) \) is officially part of \(p \& q \) only if each truthmaker for \(p \rightarrow (p \& q) \) implied by a truthmaker for \(p \& q \). One truthmaker for the conditional is \(\bar{p} \), the fact that \(\neg p \). \(\bar{p} \), however, far from being implied by a truthmaker for \(p \& q \), is incompatible with all such truthmakers.

\(^{12}\) A classic formulation of this worry:

It sometimes seems to be thought that we can sidestep the question of whether ‘sees’ has ‘success grammar’ or ‘existential import’, by arguing as follows: Let us grant that ‘see’ as used in current English licenses inferring ‘D exists’ from ‘S sees D’. But...this usage is philosophically inconvenient; hence we should conduct our discussion in terms of ‘see*’, where ‘see*’ means just
containing whole.
So we are caught in a dilemma. On the one hand, leftovers should always exist when B is properly part of A; otherwise content-part is under suspicion of not really being a kind of parthood. On the other hand, B may well strike us as inextricable from A—dancing can’t be pulled out of dancing badly—in which case the remainder is apparently just not there.\footnote{A solution is hinted at in the last paragraph. A strange sort of part is still a part. A strange sort of remainder is still a remainder.} We come back to this in section 8.5.

8.4 Extrapolation of the Fourth Kind

The issue was supposed to be extrapolation, not extrication. Extrapolation will be serving, later, as a model for extrication. But I admit that the two strike us initially as quite different.

What the word “extrapolate” initially brings to mind is Hume’s puzzle about why the observed part of reality should resemble the unobserved part—why the greenness of these emeralds should confirm the hypothesis that other emeralds are green as well. This, the puzzle of inductive extrapolation, is not our topic here, obviously.

If I tell you it has more to do with projection than confirmation, you will think of Goodman’s new riddle of induction. Hume wants to know whether the unobserved part of reality does resemble the observed part. A prior question is, in what respects is it even supposed to resemble it? These emeralds are as much grue as green; why should it be the greenness that is expected to carry over to other emeralds, rather than their property of being grue? This is the puzzle of projective extrapolation: what are the inductively fruitful ways to project from observed cases to new cases? Projective extrapolation is at least as puzzling as inductive, probably moreso. But it is not our topic, either.

The kind of extrapolation at issue here has more of a logical flavor—it’s more to do with going on in the same way than the inductively fruitful way. This puts us in mind of Kripkenstein’s rule following paradox. Imagine that we have found an answer to Goodman; we know that new emeralds are expected to be green rather than blue. There is still the question of where this expectation gets its content.

How does it come about that the property of unexamined objects whereby what ‘sees’ means, except that ‘S sees* D’ does not entail ‘D exists’. There is, however, a fundamental problem with such a procedure. Consider someone writing on the secondary qualities who observes that ‘X is red’ entails that is colored, and decides to introduce the term ‘red∗’ to mean precisely what ‘red’ means except that ‘X is red∗’ does not entail that X is colored. The question such a procedure obviously raises is whether the deletion of the entailment to ‘X is colored’ leaves anything significant behind.Jackson [1977], 4-5).
they are properly conceived as “green” is GREENNESS rather than something else? The samples from which I learned the word have lots of chromatic properties. Why should “green” in my mouth not be true of objects resembling the samples in schmolor rather than color? This time it is truth- or application-conditions we want to extrapolate—how does the predicate come to be true of just those objects?—so I will speak of alethic extrapolation. Alethic extrapolation is in Kripke’s view more puzzling even than projective and inductive extrapolation:

Wittgenstein has invented a new form of skepticism. Personally I am inclined to regard it as the most radical and original skeptical problem that philosophy has seen to date (? , 60).

The kind of extrapolation I want to talk about today has, again, to do with truth-conditions, and is suggested, again, by certain passages in Wittgenstein. Type 4 extrapolation is in some respects more puzzling even than alethic. One reason for this is that type 4 problems remain even if, as Kripke says, we bracket the alethic problems that Wittgenstein on Rules and Private Language mainly concerns. Also though, the traditional puzzles are skeptical in nature. No one seriously doubts that inductive, projective, and alethic extrapolation “work.” Type 4 extrapolation, however, as we’ll see, may in some cases not work.

The Kripke book mainly concerns type 3 extrapolation, but type 4 comes up in an appendix, on the so-called “conceptual problem of other minds” (Wittgenstein [1953], para. 300). Type 4 extrapolation rears its head in the following (admittedly enigmatic) passage:

If one has to imagine someone else’s pain on the model of one’s own, this is none too easy a thing to do: for I have to imagine pain which I do not feel on the model of the pain which I do feel.

He does not say in so many words why it is difficult—more than, say, imagining next year’s fireworks on the model of this year’s—but presents an analogy that is meant to evoke the appropriate sense of bewilderment:

[Suppose] I were to say: “You surely know what ‘It is 5 o’clock here’ means; so you also know what ‘It is 5 o’clock on the sun’ means. It means simply that it is the same time there as it is here when it is 5 o’clock (ibid., para. 350)

Kripke:

...the ‘5 o’clock on the sun’ example seems obviously intended as a case where, without the intervention of any arcane philosophical skepticism about rule-following, there really is a difficulty about extending the old concept—certain presuppositions of our application of this concept are lacking...Wittgenstein seems to mean
that, waiving his basic and general skeptical problem, there is a special intuitive problem...illustrated by the 5 o’clock on the sun example (?, 118-9)

How is it possible to extend an old concept, or content, to an area where some of its presuppositions, or more generally implications, are lacking? To extend, for instance, the content of *Ouch, it hurts!*, which we understand initially in a first-personal way, to people such that when you beat their brains in, *it doesn’t hurt one little bit*? To extend the content of *Reagan knows that food stamps are used by welfare queens to buy vodka* to worlds where food stamps are *not* used to buy vodka? How is it possible to extend the content of *Oscar thinks water is wet* to worlds where there is no water for Oscar to be thinking about?

I hope you see some connection between the Wittgensteinian issue of how to extrapolate contents beyond their original field of application—and the earlier, broadly logical, issue of content-subtraction—how to subtract from *A* one of its implications *B*. The proposal is going to be that they are the same operation. Subtracting from *A* an implication *B* (or abstracting away from that implication, or bracketing it—I won’t distinguish these) just is extrapolating *A* from within the *B*-region of logical space to outside that region—to worlds where *A*’s implication *B* doesn’t hold. I might note, in this connection, that the content-extrapolation problem just mentioned (5 o’clock on the sun) was devised by the man responsible for the best-known subtraction problem (repeated from above):

> When I raise my arm, my arm goes up. And now the problem arises: what is left over if I subtract the fact that my arm goes up from the fact that I raise my arm? (Wittgenstein [1953], para. 621)

To subtract my arm going up from the fact that I raise it, is to extend the path that fact takes through the arm-up region to the rest of logical space, where my arm stays down. To extrapolate “It’s 5 o’clock here in Cambridge” to the sun, one has to subtract the assumption that “here” is a place like Cambridge, far enough from the sun that diurnal time-determinations make sense.

8.5 THE MYSTERIAN AND THE LOGICIAN

“Why should we need a theory of when, and how, subtraction “works”? It’s enough if we can tell in particular cases.”

But we can’t. Our judgments stem as much from temperament as features of the case. *Logicians* reason as follows: if *A* says more than *B*, there has got to be such a thing as the more that it says; the *engineers* among them believe it ought to constructible in some uniform way, from *A* and *B*. To
mysterians, subtraction is a leap into the darkness that lands us who know where.

The Mysterian Thesis: You say that there has to be such a thing as the remainder. But there is no must about it. We don’t entirely know what we mean by “remainder.” The job-description is irremediably unclear.

How much of a mysterian Wittgenstein means to be, I am not sure. But there are certainly mysterian elements in the literature he inspired. Robert Jaeger in “Action and Subtraction”¹⁴ points out a problem already noted:

The question “What is left over?”...presupposes...that there is exactly one statement with certain logical properties (321). [But] whereas there is exactly one number r such that \(r + 2 = 5 \), it is not the case that there is exactly one statement \(R \) such that \(R \& my \ arm \ goes \ up \) is logically equivalent to \(I \ raise \ my \ arm \) (328)

J. L. Hudson responds, as we saw, that if there are several different propositions whose conjunction with \(B \) is \(A \), then ...the weakest....of these [viz. \(B \rightarrow A \)] shall be considered the difference between \(A \) and \(B \).

Generalizing a bit, we have the

The Logician’s Antithesis: The feeling that there must be a remainder is quite correct. \(A - B \) is the best, most eligible, \(R \) such that \(B \& R \) is equivalent to \(A \).

The best \(R \) in Hudson’s view is the weakest one, but other worthy candidates may emerge. The logician need not even have a candidate. She is convinced on general grounds that \(A \) adds some definite thing to \(B \), and makes it her job to find it.

8.6 SUMMING UP

If \(A \) implies \(B \), is there always something that we can point to as what \(A \) adds to \(B \)? The logician, or logical optimist, says Yes. The mysterian says No. To get a bead on the issue, we distinguish four types of extrapolation: inductive, as in Hume, projective, as in Goodman, alethic, as in Kripkenstein, and abstractive, as in Wittgenstein’s “conceptual problem of other minds” and his example of 5 o’clock on the sun. Logical subtraction is understood, to begin with, as type 4 extrapolation. \(A - B \) is the result of extrapolating \(A \) beyond the bounds imposed by \(B \). The question is whether this can always be done.

¹⁴Jaeger [1973]; see also Jaeger [1976].
¹⁵Hudson [1975], 131, with inessential relettering.
Chapter Nine

Going on in the Same Way

9.1 A FRAMEWORK FOR SUBTRACTION

Who is right about remainders, the mysterian or the engineer? The extrapolation model allows a synthesis: A can always be extrapolated, but not always as far as one might like. It helps to view the matter diagrammatically.

The large rectangle is logical space. Truth-conditional contents are regions of that space, containing the worlds where a sentence is true. The proposition that B is the column on the left, and the proposition that A is the area of intersection with the horizontal bar. The bar is labelled R to mark it as the remainder when B is subtracted from A. The A-worlds lie within the column because A implies B. They lie within the bar because A implies $A-B$. The “home” region (the column) is the region A is extrapolated from.

1 Or pairs of regions, for contents that are not defined on all worlds. We confine ourselves to the simple case.
The rest, marked “away,” is the region that \(A \) is projected into. We have to find the projection rules, the rules telling us how \(R \) should behave away, given how it behaves at home. I take it that

\[R \text{ extrapolates } A \text{ beyond } B \text{ iff}
\]

(i) \(R \)’s behavior at home is modeled on that of \(A \)

(ii) \(R \)’s away behavior is modeled on its behavior at home.

Clause (i), like the basis clause in a recursive definition, is to get us started. Clause (ii) is about how to on from there. It says that the line separating \(R \) from \(\neg R \) in the \(\neg B \)-region should follow the track laid down in the \(B \)-region.

9.2 HOME AND AWAY

Let’s think first about the \(\text{ kinds } \) of condition \(R \) should meet. “Home” conditions speak to \(R \)’s behavior within the \(B \)-region. “Away” conditions speak to \(R \)’s behavior outside the \(B \)-region. A second distinction, crosscutting the first, is between “classifying” conditions and “rationalizing” conditions. Classifying conditions are to do with \(\text{ whether } R \) is true in a given world. Rationalizing conditions are to do with \(\text{ how and why } R \) is true in a world, its way of being true there. Conditions will thus be needed of four basic types:

- (HC) home-classifying;
- (HR) home-rationalizing;
- (AC) away-classifying; and
- (AR) away-rationalizing.

This way of dividing up the task suggests a certain order of operations. One begins at home, asking in which \(B \)-worlds \(R \) is to be true and in which false; that’s (HC). One looks into the reasons for these truth-value assignments; that’s (HR). The factors controlling \(R \)’s truth-value at home are carried over to the away-region; that’s (AR). \(R \)’s reasons for being true/false in away-worlds will then hopefully offer some guidance as to its truth-value in such worlds; that’s (AC).

In which \(B \)-worlds is \(R \) true? \(R \) could hardly count as extending \(A \) from the \(B \)-region, if \(R \) and \(A \) were not equivalent in that region. Our first requirement is

\[\text{(HC) Agreement} \]

\[R \text{ is } \begin{cases} \text{true} \\ \text{false} \end{cases} \text{ at home just when } A \text{ is } \begin{cases} \text{true} \\ \text{false} \end{cases}. \]
Agreement tells us that R “does the right thing” at home; it is true in the right B-worlds, those where A is also true. **Rectitude** is a matter of doing the right thing for the right reason. It might seem that, if R is true/false just when A is, in the B-region, so R should be true/false for the same reasons as A in the B-region. But that cannot be right. A’s reasons for being true obtain only at home; for they imply A, which implies B. We were looking for reasons that stand a chance of obtaining also away from home. R is true in a B-world w because w has whatever is it that sets $B\&A$-worlds apart from $B\&\neg A$-worlds—whatever it is that makes w, its B-ness given, in addition an A-world.

(HR) **Rectitude**

R is $\{\text{true} \}$ at home for the reasons A is $\{\text{true} \}$, given B.

The truth-given-B of A is the truth simpliciter of $B\rightarrow A$. We are talking, then, about reasons for $B\rightarrow A$ to be true of the sort that can obtain in B-worlds—B-compatible truthmakers for $B\rightarrow A$. (Reasons for A to be false given B are likewise B-compatible truthmakers for $B\rightarrow \neg A$.)

Next is to identify R’s truthmakers and falsemakers in away-worlds, as a function, presumably, of its truth- and falsity-makers at home. A hypothesis continuing A into a new region of logical space should not suddenly sprout new reasons for being true/false; it should be true/false away for the same reasons as it was true/false at home.

(AR) **Integrity**

R is $\{\text{true} \}$ for the same reasons away as it is $\{\text{true} \}$ at home.³

It remains to specify R’s truth-value in away-worlds—as a function, presumably, of the reasons R has available to it in such worlds for being true or false (see **Integrity**). You might expect R to be true in any away-world where a home-style truthmaker obtains. But what if a home-style falsemaker obtains in the same world? (An example is given in section 9.4.) R has in that case no more reason for being true than false. The proper rule is

(AC) **Determination**

R is $\{\text{true} \}$ away if it has reason to be $\{\text{true} \}$ and no reason to be $\{\text{false} \}$

² Rectitude is spelled out further below. R’s truthmakers (falsemakers) in a B-world w are ultimately defined as $B\rightarrow A$’s ($B\rightarrow \neg A$’s) “targeted” truthmakers in w. A truthmaker for $B\rightarrow X$ is targeted if it is B-compatible AND B-efficient. The formulation in the text leaves B-efficiency out of it, because it doesn’t have much to do at this point. B-efficiency begins to bite later, when we drop the requirement that A implies B.

³That is, any reason R might have for being true/false in an away-world is a reason that obtains also in at least one home-world. This is a one-directional inclusion only. We do not assume that R’s ways of being true/false at home obtain also in away-worlds.
Putting the pieces together (including the clarification in note 2), we get the following as R’s evaluation rule:

38 R is true (false) in a world w, be it home or away, just if

1. $B \rightarrow A$ has, and $B \rightarrow \neg A$ lacks, a homestyle truthmaker in w
2. $B \rightarrow \neg A$ has, and $B \rightarrow A$ lacks, a homestyle truthmaker in w.

A simpler formulation is given below (section 9.4): R is true if A “adds truth” (and only truth) to B, false if it adds (only) falsity.

9.3 SYNTHESIS

The mysterian about remainders thinks that the notion is ill-defined. The logician, or logical optimist, hopes for a definition. If the stated conditions are correct, there is truth to both sides.

9.3.1 The Truth in Mysterianism

The lesser truth is that $B \rightarrow A$ is a bad candidate for the role of A–B. A good candidate would be an R whose truth-value was controlled by the same factors outside the B-region as within it. $B \rightarrow A$ is true in $\neg B$-worlds because B is false, or because of whatever it is that makes B false. A fact making B false cannot obtain in any B-world. But then, $B \rightarrow A$ can be true in away-worlds for a non-home-style reason, which (by Integrity) disqualifies it for the role.

The greater truth is that B cannot always be neatly excised from A. To raise my arm, I must (let’s agree) will my arm to go up. Is the act of will what my arm’s going up adds to my raising it? No, for I could have willed it up (R) without raising it (A), even had my arm gone up (B). (It might have gone up for other reasons.) This is a violation of Agreement. I will my arm up does not imply I raise my arm in the region of logical space where my arm goes up.

What about I effectively will my arm to go up? It has the opposite problem; it is too strong. One way for I effectively will my arm to go up to be false is that my arm stays down, making the act of will ineffective. But, my arm staying down is not the kind of falsity-maker that can obtain also in home-worlds: worlds where my arm goes up. I effectively will my arm to go up picks up new falsity-makers as we pass out of the region where my arm goes up. This a violation of Integrity.

9.3.2 The Truth in Optimism

What we are looking for in a remainder is an R that agrees with A in the B-region, and agrees with itself across the $B/\neg B$ border. An R like that always exists, I claim. There is a recipe in the next section.
But, don’t we know that, in some cases, it cannot exist? That subtraction is not always well defined? We don’t, actually. There is a subtle ambiguity here. It is one thing to say that subtraction is well-defined as a logical operation on statements or propositions or thoughts. That means there is always such an item as $A - B$. It is another thing to say the proposition itself is well-defined. For the proposition to be well-defined means that, go to any world you like, it is true or false there. Subtraction is well-defined in the first sense, but not the second. This is the proposed synthesis: when B is intuitively inextricable from A, a proposition $A - B$ still exists, just don’t try evaluating it at (too many) worlds where B fails.

9.4 VALUE ADDED

One objection to the horseshoe theory is that $B \rightarrow A$ is not part of A, whereas $A - B$ sometimes should be part of A, particularly when B is part of A.\footnote{Let A and B be $p \& q$ and p. Why is $p \rightarrow (p \& q)$ not part of $p \& q$? It has truthmakers, such as p, which are not implied by truthmakers for $p \& q$, and falsemakers, such as $p \& \neg q$, that are not implied by falsemakers for $p \& q$.} Another, not unrelated, objection is that $A - B$ lacks integrity since it takes on new truthmakers when B is false.

A third, more directly intuitive, objection is this: the theory makes it too difficult for $A - B$ to be false, and too easy for it to be true. Suppose with Hudson that $A - B$ is $B \rightarrow A$. Then it is false only when B is true, and true whenever B is false. That was not the idea! The point of subtracting B is to arrive at a hypothesis whose truth-value is independent, or as independent as possible, of the truth-value of B; we bracket B to put ourselves out of its reach truth-value-wise. This means, not only that B’s falsity should not force $A - B$ to be false, but also that it should not force $A - B$ to be true.

Suppose that F is Falstaff’s total testimony, and let G be his testimony about Jones’s colleague Green. $F - G$ is Falstaff’s testimony about Jones. One would not have thought that Falstaff, in order to misrepresent Jones, had to speak the truth about Green! Why should it not be possible to misrepresent both at once? This is disallowed, however, by the horseshoe theory. Falstaff’s testimony strictly about Jones, construed as $G \rightarrow F$, is automatically true if he lies about Green.

The problem seems to be this. “A false, B true” is the limiting case of a broader phenomenon of A being false in its own right, in a way owing nothing to B. $A - B$ is false, not only in that limiting case, but whenever A, as I’ll put it, “adds falsity” to B. $A - B$ is intuitively speaking false if A adds falsity to B. (It is true if $\neg A$ adds falsity rather than A. I am ignoring the case where both do.)

Fine, but what is this relation of adding falsity, or being additionally false, or being false not just because B is false? I want to say that X adds falsity to B\footnote{In particular, when X is A, or its negation.} when $B \& X$ is false for a reason that does not trade on B being false,
as is shown by its being instantiable even when B is true. This is the same as $B \rightarrow \neg X$ being true for a reason that can obtain even when B is true. Reasons like that, that do not trade on B's falsity, are the kind we above called B-compatible or B-friendly.

So, for instance, $p \land q$ strikes us as adding falsity to q—compounding any offense against truth committed already by q—if p is false, and truth (its negation adds falsity) if p is true. Asked to explain why $p \land q$ adds falsity to q when p is false, we point out that it is false for a reason (viz., p) that can obtain equally well when q is true—which is the same as $q \rightarrow \neg (p \land q)$ being true for such a reason. Asked to explain why $\neg (p \land q)$ adds falsity to q when p is true, so that p adds truth, we observe that $q \rightarrow (p \land q)$ is true for a reason (viz., p) that can hold when q is true. The principle here is that

39 X adds truth (falsity) to B in w iff $B \rightarrow X$ ($B \rightarrow \neg X$) is true in w for a B-friendly reason.

The truth-conditions of $A \rightarrow B$ (38 above) can now be restated as follows:

40 $A \rightarrow B$ is

1. false in w iff A adds falsity, but not truth, to B in w
2. true in w iff A adds truth, but not falsity, to B in w
3. otherwise undefined

The qualifiers “but not truth” and “but not falsity” are because a world does not always speak with one tongue; that A adds truth in w is compatible with its adding falsity too. Example: A and B are Both of Herb’s dogs have fleas and Herb has exactly two dogs; w is an away-world where Herb has three dogs, of which two have fleas. R has a truthmaker in w, since the two aforementioned dogs form a B-compatible truthmaker for Herb has exactly two dogs \rightarrow Both of Herb’s dogs have fleas. But R has a falsemaker there as well, since Herb’s third dog is a truthmaker for Herb has exactly two dogs \rightarrow It is not the case that both of Herb’s dogs have fleas that is compatible with Herb’s having exactly two dogs. $A =$ Both of his dogs have fleas adds both truth and falsity to Herb has exactly two dogs—truth in that it gets two of his dogs right, falsity in that it misrepresents the other dog.

9.5 PRESUPPOSITION FAILURE

Look again the third clause of our definition of $A \rightarrow B$ (40 above), which specifies when $A \rightarrow B$ is undefined. In added-value terms,

60Strictly, X adds truth (falsity) to B iff $B \rightarrow X$ ($B \rightarrow \neg X$) has a targeted truthmaker. A targeted truthmaker for $B \rightarrow X$ is a B-compatible truthmaker that “uses as much of B as it can,” in the sense of minimizing the extent to which $Y \rightarrow B$ is also implied, Y ranging over X’s parts. The new clause gets little traction when the consequent implies the antecedent; proportionality has much the same effect. It becomes important later (section 11.1), when we drop the implication requirement.
41 $A - B$ is undefined in w iff
(i) A adds neither truth nor falsity to B in w, or else
(ii) A adds both truth and falsity to B in w

An interesting test case arises if A presupposes B, as, for instance, *The King of France is bald* presupposes *France has a king*.

France has a king → The King of France is bald is true because France lacks a king. Such a truth-maker is not B-friendly, though; it forces B to be false. The lack of a B-friendly truthmaker means that *The King of France is bald* does not add truth to *France has a king*. Neither, for similar reasons, does it add falsity to *France has a king*. By condition (i), then, *The King of France is bald* is undefined.

If indeed *The king of France is bald* adds neither truth nor falsity to its presupposition, this may explain why, as Strawson observed, it strikes us as unevaluable. Not every king-of-France strikes us that way; *The king of France is in my garage right now.* seems false Intriguingly, the latter sentence does add falsity to *France has a king*. *France has a king The king of France is in my garage* is false because my garage is empty, which is compatible with France having a king.

A presupposition fails catastrophically, if, as with *The king of France is bald*, the question of truth or falsity no longer arises. *The king of France is in my garage right now* is a case of non-catastrophic presupposition failure. That we find it easier to evaluate the A that “adds something” to its presupposition P suggests that P fails catastrophically when A adds neither truth nor falsity to P. This is a sufficient condition for catastrophic presupposition failure. Is it also necessary? I am inclined to think not. What if A adds truth and falsity to P, as occurs, apparently, with $A = \text{The author of Principia Mathematica is bald}$ and $P = \text{Principia Mathematica has exactly one author}$. ($A$ adds truth on account of Whitehead, falsity on account of Russell). This too strikes me most days as unevaluable (“the question of truth or falsity does not arise”). Let me then conjecture that

42 A suffers from catastrophic presupposition failure iff (i) A adds neither truth nor falsity to P, or (ii) it adds both truth and falsity to P.8

Equivalently given (41), P fails non-catastrophically iff $A - P$ is defined despite P’s falsity. A natural further conjecture is:

43 A’s felt truth-value is the real truth-value of $A - P$.9

7Not because France lacks a bald king. This by proportionality; the “bald” is an irrelevant extra.

8See Schoubye [2009] for a different account of catastrophic presupposition failure.

9A counts as false, then, if A adds just falsity to P, that is, $P \rightarrow A$ has a P-compatible truthmaker and $P \rightarrow \neg A$ does not. This is meant to improve on the proposal in Yablo [2006b]: A counts as false if it has, and $\neg A$ lacks, implications that are false for P-compatible reasons. The difference is that we worry now about one implication only, viz. $P \rightarrow X$; X is A or $\neg A$, as the case may be.
If something like this is correct, then philosophical arguments relying on intuitive truth-value judgments are liable to misfire when \(A \) has a presupposition whose truth-value is the point at issue. A certain kind of Platonist, for instance, argues like this:

1. *The number of planets \(\neq \) zero* is true.
2. It could not be true unless there were numbers
3. So there are numbers.

The challenge is to distinguish this argument from a superficial analogue:

1. *The King of France \(\neq \) zero* is true.
2. It could not be true unless France had a king.
3. So France has a king.

The first premise is open in each case to a similar challenge. “Strictly speaking, the undeniable-seeming sentences are false. They strike us as true because we are a semantically forgiving tribe; we try not to hold the falsity of sentences’ presuppositions against them. \(A \) is evaluated in many cases as though it were \(\text{\(A \text{-} P \)}\). \(A - P \) really is true in these cases. But we can’t derive an ontological conclusion from it, for the conclusion depends on \(P \); and \(P \) has been subtracted away. (Otherwise \(A \) might not have struck us as true.)”

9.6 SUBTRACTION, CONJUNCTION, TRUTH-TABLES

Logical subtraction is sometimes introduced via a problem to which it is supposed to be the solution: find the logical operation that stands to conjunction as numerical subtraction stands to numerical addition. Or the problem could simply be: find the inverse of conjunction. The problem is a little unclear since there are two things it could mean for one function or operation to be the inverse of another. It could mean, letting the functions be \(f \) and \(g \), that \(f \) undoes \(g \)’s action—\(f(g(x)) = x \). It could also mean that \(g \) undoes \(f \)’s action—\(g(f(x)) = x \).

These are distinct possibilities, as we see by looking at the case of interest. Subtraction undoes conjunction if \((A \& B) - B \equiv A\); call that *Recovery*. Conjunction undoes contraction if \((A - B) \& B \equiv A\); call that *Return*.

Return is a non-starter. Suppose that \(A \) implies \(B \), as it has so far in this book. Then \(A \& B \equiv A \), so \((A \& B) - B = A - B\). *Return* thus says, in effect, that subtracting \(B \) from \(A \) always leaves \(A \) unchanged. This is insane, I mean, absurd.

What about *Recovery*? It can fail only if \((A - B) \& B \) fails to imply \(A \), or vice versa. The first entailment fails iff there’s a scenario where \((A - B) \& B \) is true but \(A \) is false. \(A - B \) must be true in this scenario, since its conjunction with \(B \) is true. So we are looking at a scenario where \(A - B \) is true even though \(B \) is true and \(A \) false. Subtracting a truth from a falsehood should
yield a falsehood, surely. Imagine conversely a scenario where \(A \) is true, but \((A-B)\&B\) is false. \(A-B \) must be false, since \(B \) is implied by \(A \). So we are looking at a scenario where \(A-B \) is false even though \(A \) is true. Relieving a truth of one of its implications should yield a truth, surely.

Note that we have just in effect begun a truth-table for \(A-B \). It is false, if \(A \) is false and \(B \) is true, and true, if \(A \) and \(B \) are true. This gives us the top two lines, and the third line—\(A \) true, \(B \) false—is not possible, since \(A \) implies \(B \). \(A-B \)'s truth-value is determined by those of \(A \) and \(B \), until we get to the last line. It is only when \(A \) and \(B \) are both false, that the truth-value of \(A-B \) floats free the truth-values of its components.

Why “officially” is \(A-B \) true in a world \(w \) where \(A \) and \(B \) are both true, as on the first line? \(B\rightarrow A \) is true in \(w \) on account of its consequent being true there. Any truthmaker for the consequent is bound to be \(B \)-compatible, since it obtains in \(w \) and \(w \) is a \(B \)-world. So \(A \) adds truth to \(B \) in \(w \). It adds falsity in \(w \) iff \(B\rightarrow\neg A \) has a \(B \)-compatible truthmaker in \(w \). That it can’t, because \(B\rightarrow\neg A \) is false. \(A \) thus adds truth and no falsity.

Why is \(A-B \) false in a \(w \) where \(A \) is false and \(B \) is true, as on the third line? \(A \) can’t add truth in \(w \), for \(B\rightarrow A \) is false there. It adds falsity in \(w \) iff \(B\rightarrow\neg A \) is true there for a \(B \)-compatible reason. It cannot fail to be true for such a reason; its truthmaker is automatically \(B \)-compatible since \(B \) is true. \(A \) thus adds falsity in \(w \) and no truth.

If \(A-B \)'s truth-value is left open when \(A \) and \(B \) are false there, that is because their falsity is silent on the question of what \(A \) adds to \(B \). Suppose that \(B \) is \textit{Barky is good} and that this is false. \textit{Barky is a good dog} adds only truth to \textit{Barky is good}, what with Barky being a dog.\(^{10}\) \textit{Barky is a good god} adds only falsity, since Barky is not a god. \textit{Barky is known to be good} adds neither truth nor falsity, we may suppose. \textit{Barky is a good dog—Barky is good} is accordingly true, while \textit{Barky is a good god—Barky is good} is false, and \textit{Barky is known to be good}—\textit{Barky is good} is neither true nor false. This is the one respect in which \(A-B \) is not truth-functional: nothing follows, truth-value-wise, from the assumption that \(A \) and \(B \) are both false.

9.7 DEGREES OF INEXTRICABILITY

The quasi-truth-table determines for us the one and only coarse-grained proposition expressed by \(A-B \); it is the function taking worlds to truth-values according to the indicated rules. That we get a remainder proposition \textit{in every case} would seem like a point in favor of the logician’s approach. Let’s now try to offer something to the mysterian.

\(^{10}\) Assume for example’s sake that “good” is an intersective adjective.
A B A adds truth to B? A adds falsity to B? A–B is

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>Yes, B→A is true for a B-friendly reason.</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>Impossible, A implies B</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>No, B→¬A is not even true.</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>Yes.</td>
</tr>
</tbody>
</table>

Table 9.1 Quasi-Truth-Table for Subtraction

The quasi-truth-table shows that A–B is never entirely undefined. The worst possible outcome for A–B is to be defined on B-worlds only. This, then, presumably, is the case where B is so securely lodged in A that nothing evaluable remains when we try to extricate it.

44 B is perfectly inextricable from A iff A–B is defined only on B-worlds. A does not add only truth, or only falsity, to B except when B is true.

The traditional paradigm is the inextricability of determinables from their determinates. Here is a tomato, Tom. Let C = Tom is crimson, and D = Tom is red. Perfect inextricability would be the result if Tom is crimson did not add truth or falsity to Tom is red, unless Tom was red.

So, let’s go to an away-world w—a world where Tom is not red but, say, green. Does Tom is crimson add falsity to Tom is red in w? The definition says that

Tom is crimson adds falsity to Tom is red in w just if Tom fails to be crimson, in w, for a reason that does not trade on the fact that Tom is green — for a red-friendly reason. It adds truth just if Tom fails to be otherwise red—another shade but crimson—in w, for a reason compatible with Tom’s being red.

Now, both Tom is a crimson-y red and Tom is a non-crimson-y red do have falsity-makers when Tom is green—the very fact of Tom’s greenness, for example. That is not the problem. The problem is that all the falsity-makers that come to mind would seem to be trade on Tom not being red.
The question before us is whether there is something else about green-Tom—something that Tom can keep when he’s red—which prevents him from being crimson, or, which prevents him from being some other, non-crimsony, shade of red. (“Prevents” in the sense of being how he’s not crimson, or that in virtue of which he’s not crimson.)

What would this red-friendly feature be? I find myself reaching here for the kind of thing Wittgenstein says in Remarks on Color (Wittgenstein [1977]): *There can be transparent red, but not transparent white*, for instance, or *A luminous grey is impossible* Let’s imagine that Wittgenstein has discovered somehow that there can’t be a dull crimson. Crimson is, of its nature, vibrant and glorious. And let’s imagine that Tom is, in w, a particularly lackluster sort of green. Then one could try to say that *Tom is crimson* is false, not (or not only) because Tom is green, but due to the lack of vitality of Tom’s color whatever it is.

I cannot say for certain that no one could develop a system along these lines. But on the face of it, it seems silly. The reason Tom is not crimson is that Tom is green, not that Tom has some special higher order dullness property that red things and green things can in principle share. Likewise the reason that Tom is not some other, non-crimsony, shade of red is that Tom is green; it has nothing to do with some polymorphous property of green-Tom that red things can possess unless they have the misfortune to be crimson. A thing has to be red, it seems, to have a feature that boots red up into a particular shade of red, or that shade’s relative complement within red. (Figure 9.2 lays this out in quasi-truth-table form. A “good” way to be C-if-D means a D-compatible, or D-friendly, way. X is “no way” to be C-if-D just when it is not a good way.)

Tom is crimson – Tom is red looks like a case of perfect inextricability. So does *Tom weighs a pound – Tom weighs over an ounce: Tom is red – Something is red; I washed half as many tomatoes as you – You washed some tomatoes*. It would be interesting to check these examples against (44). But we need to move on to the opposite kind of perfection:

45 B is perfectly extricable from A ifff A–B is defined everywhere; go to any world you like, A adds falsity to B there, or it adds truth, but not both.

To simplify the Genesis example from above, let’s say there were a few amoeba to begin with, and the number then grew, slowly at first, then more and more quickly. It is conjectured that #(k)—the number of amoeba after k hours—is an exponential function of k.

(E) #(k) = 2^k, k = 1, 2,...

remainder is unevaluable, when Tom is green, if there is no good (= red-friendly) for green-Tom to be crimson-if-red, and no good reason for green-Tom to another-shade-of-red-if-red.

14 Locke writes of a “studious blind man” who claimed that he “now understood what scarlet signified. Upon which, his friend demanding what scarlet was? The blind man answered, It was like the sound of a trumpet” (Locke [1706], book 3, chapter 4, paragraph 11).
E is not entirely about amoebas; it implies, or assumes, that there is the number 2, which has various integral powers, themselves given numerically; it assumes, for short, that

(F) Numbers exist.

How far can Numbers exist be extricated from The number of amoebas after k hours is 2 raised to the power of k? For perfect extricability, we’d need it to hold in every numberless world either that \(\#(k) = 2^k \) adds truth to Numbers exist, or \(\#(k) \neq 2^k \) adds falsity to Numbers exist, but not both.

This would seem to be the case. For let a world w be given. Either it starts out with just a single amoeba, with the population then doubling hourly. Or it starts out with several, or no, amoebas, or the population on some occasions more than doubles, or less than doubles. Starting out with a single amoeba, the population then doubling hourly, is (or ensures) a number-friendly truthmaker for

\[
\text{Numbers exist} \rightarrow \ #(k) = 2^k \text{ for all } k \geq 0.
\]

and precludes a number-friendly truthmaker for

\[
\text{Numbers exist} \rightarrow \ #(k) \neq 2^k \text{ for some } k \geq 0.
\]

Starting out with, say, two amoebas, the number then tripling hourly, is a number-friendly truthmaker for the second conditional, and precludes one for the first. The remainder when Numbers exist is subtracted from \(\#(k) = 2^k \) is thus a proposition that is true in one kind of numberless world and false in numberless worlds not of that kind. others. Numbers exist would appear to be cleanly extricable from The number of amoeba after k hours is 2 raised to the power of k.

Between these two extremes lies a vast unexplored ocean of imperfect extricability. One example we have already seen: that my arm goes up is

15 Worlds with the wrong temporal structure belong to the second category.
lodged in my raising it, but not, as it were, glued to the spot. The action exceeds the bodily movement enough for *I raised my arm* to add falsity in scenarios where I am unconscious, say, or unequivocally opposed to raising it; unconsciousness and unequivocal opposition are up-friendly truthmaker for *It went up → I did not raise it*. Does an up-friendly truthmaker exist for *It went up → I did raise it*? It would seem not. I am not when unconscious in any condition that combines with the hypothesis of my arm going up to imply that I raised it. Worlds where raising my arm adds falsity to *It went up* without adding truth are worlds where the remainder is false.

Are there worlds where the remainder is true? I struggle to raise my arm, but you have me wrapped in duct tape. We would like to find an up-friendly truthmaker for *My arm goes up → I raise it*. My struggling to raise it seems like a candidate until we remember that trying to move a limb does not suffice for moving it if it moves; the trying has to be efficacious, via the right sort of causal chain. What makes the conditional true is simply that my arm stayed down. (Still less can an up-friendly truthmaker be found for *My arm goes up → I didn’t raise it*.) The remainder appears to be evaluable in away worlds only as false, never true. *P* is partly extricable from bringing it about that *P*, but, it seems, in a one-sided way: *B[P]*–*P* is false in every away-world where it is evaluable.

So much for action, let’s try knowledge. Is *P* any more extricable from *K[P]* than it was from *B[P]*? I was initially skeptical, since *P* is causally tied into both, albeit in different directions. Bringing *P* about is, as Searle says, causally mind-to-world, while knowing is causally world-to-mind; it involves, in most cases, believing that *P* because of the fact that *P*. But the connection is not exceptionless in the case of knowledge. Mathematical beliefs do not have to be caused by mathematical facts, to count as knowledge, and knowledge about the future does not require backward causation. Consider then *K[P] → P*, where *P* concerns events that have not yet occurred, but are only expected. How evaluable is *K[P] → P* in worlds where the expectation turns out to be false?

One certainly sees how the remainder could be false. It is false if conditions obtain that ensure the truth of *P → ¬K[P]* in a *P*-friendly way. Conditions like that are easily imagined. Maybe the thinker is insane, or her source is Madame Zelda at the Psychic Hotline. The remainder is true if conditions obtain that ensure the truth of *P→K[P]*, in a *P*-friendly way. This is trickier. We need a case where the one and only obstacle to knowing of some future event that the event does not in fact occur. Remove that obstacle and the believer cannot but know.

The world is not about to end, in Alma’s view. The belief is true and, I would think, knowledgeable. Imagine, though, a world that agrees with actuality so far—it’s a millisecond before midnight—but is about, through some some bizarre quantum coincidence, to pop out of existence. Alma does not know in that scenario that tomorrow will come, because in that scenario

16 Direction of fit is another matter entirely.
it does not come. Is that the only reason she fails to know? Was her belief arrived at in such a way that if you transplant it and its background to a world that does not end—the actual world, as it might be—the belief becomes (must become) not only true but knowledgeable? I am far from sure about this, but I submit that Alma is bound to know, or the example can be filled out so that she is bound to know, in a world where the belief is not mistaken. If the example is granted, then *Tomorrow will come* is two-sidedly extricable from *Alma knows that tomorrow will come*, the remainder true in some away-worlds and false in others.

Some implications are perfectly extricable from their impliers; others are partly extricable; others are not extricable at all (*A*–*B* is defined only on *B*-worlds). All these possibilities arise already in a propositional calculus setting. So, for instance, *q* is wholly extricable from *p&q*, and *p ∨ q* is wholly extricable from *p ∨ q* (∨ is exclusive disjunction). *p ∨ q* is wholly inextricable from *p*, and *p ↔ q* is wholly inextricable from *p&q*. (Gappy remainders require one new bit of notation. If *X* and *Y* are PC sentences, then *X ∧ ∂ Y* is defined where *Y* is true, and has the same truth-value as *X* where it is defined.)

Results along these lines are collected in Table 9.3.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Y</td>
<td>X–Y</td>
</tr>
<tr>
<td>p&q</td>
<td>q</td>
<td>p</td>
</tr>
<tr>
<td>p</td>
<td>p ∨ q</td>
<td>p & ∂(p ∨ q)</td>
</tr>
<tr>
<td>p → q</td>
<td>p → q</td>
<td>q → p</td>
</tr>
<tr>
<td>p ∨ q</td>
<td>p ∨ q</td>
<td>(p ∨ q) & ∂(p → q)</td>
</tr>
<tr>
<td>p&q</td>
<td>p → q</td>
<td>(p ∨ q) & ∂(p → q)</td>
</tr>
<tr>
<td>pq ∨ r</td>
<td>pq ∨ r</td>
<td>q ∨ r</td>
</tr>
<tr>
<td>pq ∨ r</td>
<td>pq ∨ r</td>
<td>pq ∨ r & ∂(q ∨ r)</td>
</tr>
</tbody>
</table>

Table 9.3 Remainders in Propositional Calculus

17 Minimal models and countermodels play the role of truthmakers and falsemakers. A minimal model of *S* is a partial valuation minimal among those whose classical extensions all verify *S*. A minimal countermodel of *S* is a minimal model of ¬*S*. The minimal models of *p → q*, for instance, are {1, 1}, and {0, 0}. Its minimal countermodels are {1, 0} and {0, 1}.

18 The ∂-notation is from Beaver [2001].

19 A word about the last row. *pq ∨ r* & ∂(*q ∨ r*) is not part of *pq ∨ r* even though *p ∨ r* is part of *pq ∨ r*. (No minimal model of *pq ∨ r* extends the minimal model of *pq ∨ r* & ∂(*q ∨ r*) that assigns truth to *q* and *r*. This runs counter to the mereological principle of *Supplementation*. That principle is satisfied, however, by “inner” remainders so that subtracting a part always leaves a part. *X–Y* is obtained by restricting *X–Y* to worlds where it has a truthmaker (falsemaker) implied by some truthmaker (falsemaker) for *X*. *X–Y* agrees with *X–Y* except on the last row. The inner remainder when *p ∨ r* is subtracted from *pq ∨ r* is *pq ∨ r* & ∂(*q ∨ r*)...
9.8 SUBTRACTION AS A PHILOSOPHICAL TOOL

I mentioned that philosophy has tended to approach elusive contents from below, asking how they might be reached by conjoining weaker contents. What are the prospects for “analysis from above”, in which we characterize a content by first overshooting the mark and then pulling back? One large difference, of course, is that conjunctions are always well-defined, while remainders may or may not be, depending how extricable the subtrahend is from the minuend. Certainly there have been some spectacular failures in this area. But there have also been some prima facie successes. Note that full extricability is not always required, for the target notion may itself be defined only in our corner of logical space. Rather than getting into the weeds on this, let me list for your consideration some attempted analyses from above. Some we have seen before, others not; some are frivolous, others perhaps less so.20

Trying to raise my arm = raising it, except it might not go up.
A lawlike statement = a law, except it may or may not be true.
Prehension is comprehension, except maybe not intellectual.21
Judgment = what is left of belief when phenomenal quality is subtracted.22
Quasi-remembering = remembering, but it might not have been me. 23
Solipsistic jealousy is jealousy, minus the target’s existence.24
Fragility = what breaking adds to being dropped.25
A thing looks red iff I see that it is red, minus the implication of being red.
To be green is what looking green adds to being under observation.
An act is “courageous” iff it is courageous, apart from being admirable.
Warrant = whatever distinguishes knowledge from true belief 26
I am responsible for ϕing if I am to blame, not to say ϕing is wrong.27

20Williamson
21From a commentary on Whitehead, Process and Reality.
22Chalmers [1996], 174
23“Someone’s claim to remember a past event implies that he himself was aware of the event at the time of its occurrence, but the claim to quasi-remember [it] implies only that someone or other was aware of it” (Shoemaker [1970])
24Putnam [1975]
25Goodman [1983]
26Plantinga [1993]
27Gideon Rosen suggested this as a possible view, not necessarily his own.
These are again analyses that have been attempted, not necessarily successful analyses. Subtraction is a delicate operation that may not come off as planned or hoped. One then has to decide whether it is the analysis that is faulty, or the analysandum; if this is what it means to be F, then so much the worse for the notion of being F. It is because warrant and square-quoted courage are rightly defined that they are rightly viewed with suspicion.

That being said, it is not always clear why suspicion falls where it does. Enormous weight may be laid on notions analogous to ones that are considered unfit for serious work. Take the dogmatism debate in epistemology. Does the fact of a sock’s looking red give me non-inferential justification for believing it to be red, or am I supposed to infer its color from how it looks? Both sides take themselves to understand what it means to look red. But, if a sock’s looking red to me is defined as my seeing it to be red, but for the implication of veridicality, then the notion is problematic. Why should there be a state that makes up the difference between P and seeing that P, when there is nothing like that for bringing it about that P? Maybe looking red can be explained in some other way; maybe we can confine ourselves to paradigm cases of looking red. I do not at all mean to be saying that the debate is undermined, just that philosophers are unbothered about the issue.\(^{28}\)

A second area where subtraction might potentially shed some light is metaontology. Some existence questions are hard, or harder, to take seriously than others. (That a question is hard to take seriously does not make it automatically misguided. A thing that is hard to do may be nevertheless worth doing.) Special efforts are called for with, for instance, numbers and fists and arbitrary mereological sums. We can all agree on this, I hope, even if we think the effort worth making. A world with bachelors in it seems clearly distinguishable from a world where it is clear what bachelors are supposed to be like: they should not be married, etc. Imagine now a world with facts about what numbers are supposed to be like; there should dwell among them one that is least but none that is greatest, etc. How a world like that differs from one where there are objects of the right type is not obvious. Still less do we understand which of them is called for by There are lots of primes.\(^{29}\) Jonathan Lear remarks in this connection on

our limited understanding of... how the truth of a mathematical statement may be ensured by the concepts employed rather than by the objects described. Whether with a more developed understanding of these notions we can, to use a Wittgensteinian phrase, "divide through" by the objects of mathematics, be they abstract objects or mental constructs, is a question that remains open (Lear [1977]).

\(^{28}\)Williamson is an exception. “Neither the equation ‘Red = coloured + X’ nor the equation ‘Knowledge = true belief + X’ need have a non-circular solution” (Williamson [2000], 3).

\(^{29}\)Compare There are lots of pawns.
Let’s pursue this question a little. The dividing-through metaphor is attractive but a bit mysterious. Here is a (somewhat flat-footed) suggestion about how to cash it out.

Division by n, the function taking x to $x ÷ n$, is the inverse of multiplication by n, the function taking x to $x × n$. Insofar as conjunction is the logical counterpart of multiplication, “logical division” is the operation on X that undoes conjunction with N. This operation we know to be $X – N$, written for the time being as $X ÷ N$.

What does it mean to “divide through by the objects of mathematics,” on this picture, if the relevant objects are numbers and the claim at issue is $A = \text{The number of planets is ten times the number stars}$. To say that we “can divide through by the numbers” is to say that the operation leaves A in relevant respects unchanged; numbers aside, it says the same as before.

Now, A cannot literally be divided by numbers; division as we are conceiving it is an operation on statements or hypotheses. What is available as a divisor is the hypothesis N that numbers exist. We “can divide through by N” if $A ÷ N$ says the same about the non-numerical world (viz. that there are ten times as many planets as stars) as A itself. $A ÷ N$ says the same as A, numbers aside, just if N is perfectly extricable from A. The Wittgensteinian line of thought can now be reconstructed as follows: it is moot whether numbers exist if the hypothesis of their existence is perfectly extricable from claims (like A) that appear to incorporate that hypothesis.⁴⁰

I have been characterizing subtraction as a way of cancelling the subtrahend’s content, rather than negating its content. On some views, negation is itself just a cancellation device. Here is Strawson in *Introduction to Logical Theory*:

> Suppose a man sets out to walk to a certain place; but when he gets half way there, he turns round and comes back again. This may not be pointless. But, from the point of view of change of position it is as if he had never set out. And so a man who contradicts himself may have succeeded in exercising his vocal chords. But from the point of view of imparting information, or communicating facts (or falsehoods), it is as if he had never opened his mouth. The standard function of speech is frustrated by self-contradiction. Contradiction is like writing something down and erasing it, or putting a line through it. A contradiction cancels itself and leaves nothing (Strawson [1952] p.2).

Strawson seems to suggest that a speech starting with A and following up

⁴⁰It is actually in connection with sensations that Wittgenstein speaks of dividing through. “But you will surely admit that there is a difference between pain-behaviour accompanied by pain and pain-behaviour without any pain?” - ‘Admit it? What greater difference could there be?’ - ‘And yet you again and again reach the conclusion that the sensation itself is a nothing.’ - ‘Not at all. It is not a something, but not a nothing either! The conclusion was only that a nothing would serve just as well as a something about which nothing could be said’ (Wittgenstein [1953], 304). Lear evidently sees a connection. Reck [1997] agrees and traces the connection back to Frege. See also Ricketts [1986].
with \(\neg A \) has no effect on the conversational score: it is as if the speaker had never opened her mouth. Is it just me, or is Strawson wrong about this? Even if we grant that \(\neg A \) erases the earlier assertion of \(A \), why think that \(A \) returns the favor, erasing the later assertion of \(\neg A \)?

The idea that negation is, or can be, a cancellation device raises in any case an interesting question. What does one do to wipe the slate clean after an improper assertion? What goes in for \(X \) in the update rule

(i) \(A + X = \) nothing asserted?

\(\neg A \) is too strong; it reverses our stand on \(A \) rather than eliminating it. If strength is the worry, perhaps \(X \) should be a logical triviality like \(A \lor \neg A \). But, although \(A \lor \neg A \) might conceivably in some contexts implicate that the speaker is backing off from \(A \), it can equally be heard as leaving \(A \) in place (perhaps the speaker is inferring \(A \lor \neg A \) from \(A \)). What we need, it seems, is a statement that (unlike \(A \lor \neg A \)) has enough substance to it to dislodge \(A \), but (unlike \(\neg A \)) is not so substantial as to put an opposing claim in \(A \)'s place. I can think of only one form of words that does this. To cancel \(A \) cleanly, one says, \textit{hold on, it might be that} \(\neg A \). Putting \(\Box \neg A \) in for \(X \) in (i),

(ii) \(A + \Box \neg A = \) nothing asserted.

This is interesting, because we know of one other operation that returns us from \(A \) to the nothing-asserted state: the operation of subtracting \(A \).

(iii) \(A \) minus \(A = \) clean slate.

(ii) and (iii) suggest a hypothesis about what is accomplished by adding a might-statement to the conversational record:

(iv) adding \(\Box \neg A = \) subtracting \(A \),

or, rearranging a bit,

(v) adding \(\Box A = \) subtracting \(\neg A \).

This is just the shell of a theory of “might,” but one worth exploring, I think, because of the help it gives with two puzzles.

Recall my complaint in the first lecture about the traditional view of epistemic modals—“Bob might be in his office” is true in my mouth iff my information (or information available to me) is consistent with his being there. I said that it gets the subject matter wrong; I am talking about Bob and his office, not the extent of my information. It was unclear, at the time, how any theory of “might” could hope to avoid this result. Now we see how the thing might be possible. Negating \(A \) doesn’t change its subject matter; and disavowing something, as opposed to asserting it, wouldn’t appear to change the subject matter either. Attaching “might,” on the present theory, is ringing those changes in sequence; it’s disavowing the negation of \(A \). If
two operations are individually subject-matter-preserving, then the result of composing them ought to be subject-matter-preserving as well.

Now a puzzle due to Seth Yalcin (Yalcin [2007]). The following argument is very clearly invalid:

\[
\text{It might be the case that } \neg A. \\
\text{Therefore } \neg A. \\
\]

\(X \text{ therefore } Y\) is invalid, one would think, only if the conclusion can be false while the premise is true, that is, there is a possible scenario where \(X \& \neg Y\). In the present case, \(X = A\) and \(Y = \Diamond \neg A\), so there ought to be a possible scenario where \(A \& \Diamond \neg A\). And a scenario like that makes no sense. The problem is not just unassertability, as with \(A \text{ but I do not know that } A\). Unassertible hypotheses can still be hypothesized, say, in the antecedent of a conditional; if this dish has been unbeknownst to me poisoned, then I’m in trouble. And it makes no sense to say, \text{If it’s raining out, but it might not be raining out, then we’ll get wet.}\ It all looks quite different on the cancellation account. \text{It might be the case that } \neg A, \text{ therefore } \neg A \text{ is invalid, on the present suggestion, not because the truth of } \Diamond \neg A \text{ does not force } \neg A \text{ to be true, but because disavowing } A \text{ does not force me to assert that } \neg A. \ A \& \Diamond \neg A \text{ is incoherent, even as a supposition, because the instructions it gives to the would-be supposer are self-contradictory: she is to suppose that } A, \text{ while at the same time not supposing that } A.\]

9.9 SUMMING UP

Who is right, the logician or the mysterian? Not the logician, it seems, for her recipe doesn’t work; \(B \rightarrow A\) is a terrible candidate for the role of \(A–B\). No recipe could work, one might think, for we know of cases where \(B\) cannot be cleanly excised from \(A\). What is the remainder supposed to be when \text{Tom is red} is subtracted from \text{Tom is crimson}, or \text{Tom is red or green} is subtracted from \text{Tom is red}? Not the mysterian either, for she has not shown a recipe is impossible, and we have attempted to give one. The logician is right, insofar as a remainder always exists. The mysterianism is right, insofar as \(A–B\) may not extend very far out of the \(B\)-region. Possible applications include analysis from above, metaontology, and epistemic modality.
Chapter Ten

Pretense and Presupposition

10.1 SEMANTIC NOVELTY

A great puzzle of twentieth century philosophy of language was, how are finite beings able to understand a potential infinity of sentences? The answer is supposed to be that understanding is recursive: infinitely many sentences can be constructed out of finitely many words combined according to finitely many rules, and we understand a sentence by understanding the words in it and knowing the relevant rules. If this is right, then meaning, defined as whatever you have to grasp to understand, had better be compositional, too. A sentence’s meaning should be determined by the meanings of the individual words in it and by how they are put together.

A great puzzle of twenty-first century philosophy of language is shaping up to be this: how do we reconcile the solution to the previous puzzle with what sentences actually strike us as saying? It’s a puzzle because S’s compositionally determined meaning is not always a very good guide to what S intuitively says, or to its contribution to what is said by sentences in which S is embedded. A sentence’s felt content is often something that you would not have expected, or even thought possible, given just a grasp of its meaning.

It is familiar, of course, that speakers say things you would not have expected from the meanings of the sentences they utter. “That is not such a great idea” is used to say that it’s a bad idea, a reading that would seem hard to generate compositionally. But I am talking, or trying to, about contents lodged in the words—ones a sentence retains when it is not asserted, as in the antecedent of a conditional. How are these unexpected contents determined?

To appreciate the kind of problem this is, we need to think about the grades of semantic unexpectedness. In the first grade, emphasized by Kaplan, a sentence’s meaning doesn’t tell you all by itself what it says in a particular context of utterance; the meaning of “I am thirsty,” for instance, doesn’t all by itself tell you whether the one said to be thirsty is Smith or Jones. This is a weak form of unexpectedness, because the meaning of “I am thirsty” can be seen in advance to generate Jones is thirsty and Smith is thirsty as possible readings in the appropriate context, and in the second place, it is the meaning itself that tells you how context singles out one of

1Unfortunately for this way of putting it, content passed up the compositional chain of command is not necessarily semantic content. See Levinson [2000], Geurts [2009], and Simons [2010] on “intrusive implicature.”
these readings as correct.

A second possibility is that S’s meaning doesn’t make it transparent how context singles out a certain reading as correct. The meaning of “Smith’s book is on the table” offers little guidance as to why it is a book Smith owns we’re talking about, as opposed to one she wrote, or etc. One can understand “Jones cut the grass” perfectly well without knowing how it comes about that cutting the grass is mowing it, as opposed to cutting individual blades with a scalpel. This is a stronger form of unexpectedness, because one doesn’t know of a rule that determines which of two allowed readings is correct in context. But it is not as strong as all that. Our difficulty in articulating how context determines what is said does not mean the determination doesn’t occur. The problem could be one of semantic self-consciousness.

A third possibility, prominent in relevance theory and truth-conditional pragmatics, is that S’s meaning does not determine what is said, even in context. An essential role is played by agent-driven pragmatic processes (“free enrichment,” e.g.) not mandated by anything in the sentence. “She ran to the edge and jumped” says in context that she jumped off the building (the example is from Saul [2012]). “He’s not ready” says in context that he’s not ready to stay home alone. There may be nothing in the sentence’s standing meaning to suggest or even play host to such an interpretation. This is a still stronger form of unexpectedness, because what is said is to some extent a free creation. But it is not as context strong as can be imagined. A reading underdetermined (even in context) by a sentence’s meaning might still be fully consonant with that meaning; the meaning points in the right direction, it just doesn’t take you all the way home.

I am interested in the more radical case where a sentence says something

2Searle [1980], Kissine [2011].
4Context had better not be understood too expansively, lest it determine what is said by itself. One way of drawing the line is suggested by Brandom: “What I want to call ‘genuine’ semantic indices are features of utterances that can be read off without knowing anything about what the utterance means. Time, place, speaker, and possible world are properties of tokenings that can be settled and specified before one turns one’s attention to the content expressed by those tokenings..... [They] can be determined independently of [the context-sensitive expression’s] semantic value and then appealed to as input from which the value could then be computed by a character-function” (Brandom [2008], p. 58). Whether “and” conveys temporal order depends, by contrast, on the sentences it connects.
5“Saturation is a ‘bottom-up’ process in the sense that it is signal-driven, not context-driven. A ‘top-down’ or context-driven process is a pragmatic process which is not triggered by an expression in the sentence but takes place for purely pragmatic reasons — in order to make sense of what the speaker is saying. Such processes I also refer to as ‘free’ pragmatic processes— free because they are not mandated by the linguistic material but respond to wholly pragmatic considerations. For example, the pragmatic process through which an expression is given a nonliteral (e.g. a metaphorical or metonymical) interpretation is context-driven: we interpret an expression nonliterally in order to make sense of the speech act, not because this is dictated by the linguistic materials in virtue of the rules of the language.”
6This is disputed in Cappelen and Lepore [2008]. See also Borg [2006].
its meaning positively disallows. If we use “real content” for what the sentence is (rightly) taken to say on some occasion, and “semantic content” for anything worked up in context from its standing compositional meaning, then I am talking about the case where a sentence’s real content is not a possible semantic content.

Everyone will have their own favorite example. Here is one that Saul Kripke considers in his 1973 Locke Lectures. Imagine someone climbing onto a raft and pushing off into the ocean. You remain on the beach, following her progress, until she is hardly visible. When it comes time to write this up in your journal, you say,

I watched her drift slowly out to sea, until she became a dot on the horizon.

Taken at face value, this seems incomprehensible. “What?,” Kripke said. “She turned into a DOT!!”? Whatever exactly “dots” are, people never really turn into them. Insofar as the sentence nevertheless strikes us as true, we are not reading it in a way licensed by its ordinary meaning.

Donnellan gives the example of Jones, who has been falsely accused of murdering Smith (Donnellan [1966] (p. 285-6)):

Imagine that there is a discussion of Jones’s odd behavior at his trial. We might sum up our impression of his behavior by saying, “Smith’s murderer is insane.” If someone asks to whom we are referring, by using this description, the answer here is “Jones.”... We were speaking about Jones even though he is not in fact Smith’s murderer and, in the circumstances imagined, it was his behavior we were commenting upon. Jones might, for example, accuse us of saying false things of him in calling him insane and it would be no defense, I should think, that our description, “the murderer of Smith,” failed to fit him.

If the sentence too counts as saying, in context, that Jones is insane, then this is a second case in which a sentence says what its meaning disallows. Donnellan has a description (“Smith’s murderer”) acting, in its contribution to what is said, like a demonstrative. Scott Soames in Beyond Rigidity notes that an indexical can sometimes act like a description.

I am in an auditorium, attending a lecture. Two university officials enter the room interrupt the lecturer, and announce, “There is an emergency. We are looking for Professor Scott Soames. Is Professor Soames here?” I stand up, saying, as I do, “I am Scott Soames.” My intention in saying this is to indicate that I am the person they are looking for. Although this is not the semantic content of the sentence I uttered, they immediately grasp this,

7 The ultimate source may be Austin [1962]. See also Azzouni [2010].
and the three of us leave the auditorium. Later, another member of the audience reports what happened to a third party. He says... “Professor Soames said [told them] he was the person they were looking for, and the three of them left” (Soames [2002], p. 74-5)\(^8\).

The unexpected readings, or contents, in these examples raise two kinds of problem. One is about the contents themselves. When you throw the door open to content-assignments not generated in the ordinary compositional way, you would appear to have thrown the door open to everything. What makes these readings the right ones? Second, supposing the right readings or contents have somehow been singled out, there is the cognitive problem of saying how people are able to hit on them in actual speech situations. I am interested more in the first problem—what makes these the right readings?—but they will both figure to some extent in what follows.

10.2 ROUTES TO THE UNEXPECTED

I know of two main quasi-systematic ways in which unexpected readings can be generated. One route is via figurative speech. Ken Walton has a famous example.

(1) Crotone is in the arch of the Italian boot.

The sentence says something true, in a charmingly efficient way. Taken literally it says something ridiculous: that a Crotonean is some kind of Mother Hubbard-like character who lives in a shoe.\(^9\) That the literal content is ridiculous is a good sign that the real content is something else.

Here our judgment that we are dealing with an unexpected content is confirmed by the clash of truth-values. But the judgment can often stand on its own; it can be independently clear that one of the contents is unexpected, even if both are true. Another of Walton’s examples:

(2) It was Grand Central Station around here this morning.

Normally this is true at best on a figurative reading, but imagine it uttered in Grand Central Station on Xmas Eve. The fact that both readings are true does not make it particularly difficult to tell them apart.\(^10\)

\(^8\)If mother goat knocks on the door of her hut, and the seven little goats open immediately without even asking who’s there, she might say: “Are you crazy, to open the door like this?! I could have been the wolf!” (Irene Heim, reported in Büring [1998].) *I could have been the wolf* says, in context, that it could have been the wolf that was knocking.

\(^9\)Michigan’s lower peninsula is roughly hand-shaped, which lets Michiganders indicate where they live by pointing to the corresponding spot on an upheld appendage. Imagine someone taking this at face value—"What, you live on your hand?"

\(^10\)Cohen [1976] introduced the idea of twice-true metaphor. Examples include, “No man is an island,” “That guy is an animal,” “The rain beat down without mercy,” and “Singapore is an island of efficiency in Southeast Asia” (the last from Goatley [1997]).
That was the striking and dramatic route to compositionally unexpected content. There is also a homely and undramatic route, discussed by linguists and philosophers of language more than literary theorists. Imagine that the so-called “King” is a usurper, but we decide for safety’s sake to talk as if he is indeed king. Then if the usurper is in the counting house,

\[(3) \text{The King is in the counting house}\]

might well be heard as saying something true—even if its semantic content is false, since the King properly so-called is in prison. (3)’s real content concerns, not the actual king, but the one who is king in the world we are treating as actual. Stalnaker sums the situation up as follows:

If there is no one person who is presupposed to fit the description, then reference fails (even if some person does in fact fit the description uniquely). But if there is one, then it makes no difference whether that presupposition is true or false. The presupposition helps to determine the proposition expressed, but once the proposition is determined, it can stand alone. (Stalnaker [1999], p. 43).

Here, as in (1), there is a difference in truth-value (remember, the king is in prison) to bolster our judgment that the real content is not the compositionally expected one. But as before, the contrast may be directly evident. Consider

\[(4) \text{My cousin is not a boy anymore.}\]

This would normally be heard to say that my cousin is now a man. But that is because he is presumed to be still a male human being. He could in principle have left the boys’ room by a different door: death, surgery, deification, etc. The same sentence can, in a context where all other doors are blocked, “mean” that he is now a girl, or pillar of salt, or that he has been converted by some Parfitian device into five boys. Likewise, My neighbor is a bachelor says ordinarily that my neighbor is unmarried, it being presumed, and not asserted, that my neighbor is an adult male. I will call this the presuppositional route to unexpected content, since we access the content by pivoting somehow on a background assumption. The assumption influences what is said, without entering into what is said.

10.3 PIGGYBACKING ON A GAME

Two routes to unexpected content have been sketched: one relatively dramatic, by way of metaphor, studied by English professors; the other hum-

\(^{11}\) Donnellan [1966].

\(^{12}\) Langendoen: “[I]f the presupposition-assertion distinction for nouns is appropriate, there is a considerable degree of freedom that one has in shifting various aspects of their meaning from the assertive side to the presuppositional side, and back again” (ibid., 342.)
about100 February 20, 2019

drum, prosaic, a matter primarily for linguists, by way of presupposition. You might have thought, from that description, that we had a better grip on the second route than the first; and you would have been right, if you’d thought it in 1992. Walton’s “Metaphor and Prop Oriented Make Believe” (Walton [1993]) appeared in 1993. Here very briefly is Walton’s view of metaphorical content.

He starts with make-believe games, conceived as rules for the imagination. The rules for “Cops and Robbers” specify that gunplay is to be imagined (pretended, posited, daydreamed, simulated,...). We are not to think of ourselves as doing surgery or walking the plank. A game’s content is whatever it is that players are supposed to imagine to be the case.

How is the content determined? The simplest way would be to lay it out explicitly. Players are to imagine that they are in a gunfight, pinned in a corner, almost out of bullets—PERIOD. They are to do this directly, without regard to the physical setting, or where their fingers are pointing, or who might be pointing a finger at them. A game like that would be boring and is unsurprisingly never played. Content is a function rather of real world events. You are firing at me in the game only if your finger is pointing at me outside the game. You do not count as having me in your sights if you can’t see any part of me. The stash is buried wherever the sack of marbles was left.

“Props” is the word Walton uses for the things whose game-independent properties determine the content of a particular game G. If γ is the function taking hypotheses X about the props to whatever it is that players are supposed to imagine to be the case when X really is the case, then here is Walton’s basic idea. Often in our engagement with make-believe games, we are focussed on the content; we look to X (the state of the props) just for the light it sheds on $\gamma(X)$ (the game’s content, what we are to imagine). That is content-oriented make believe, in Walton’s terminology. But we might also be interested in the game’s content for what it says about the props. That Y is supposable indicates that the props must be in a condition to license that particular supposition. This is prop-oriented make believe, or since the props might be anything, world-oriented make believe.

Prop-oriented make-believe is the kind that is supposed to provide a model for metaphor. Crotone is in the arch of the Italian boot invites us to take a certain perspective on Italy, viz. seeing it as a boot. Seeing-as is allowing our imagination to be guided down certain paths by facts about the thing seen. The fact in question here is that Crotone is in a certain place. Which place? We know it by its fruits. Crotone is in the place it would need to be, to make it acceptable in the game that Crotone is in the arch of the Italian boot. Adapting a device from Kaplan, the sentence acquires as its real content that Crotone is in $d\text{that}$ (the place that makes it supposable that it sits in the arch).14

14Exploiting a game in this way is not the same as playing it, though the two may be done in tandem. To appreciate what would make the utterance correct, “construed as an
Now, Walton does not really mean to be laying out a general theory of how metaphorical contents are generated. But suppose we were young and headstrong and wanted to do just that. Then we might proceed as follows.

46 A’s real content, in the context of game G, is the R such that A is to be imagined true just when R really is true.

If γ is the associated generation function—the function taking hypotheses about the props to specifications of what is to be imagined—one can state this as follows:

47 A’s real content, in the context of a game, is \(\gamma^{-1}(A) \).

Exploiting a make-believe game in the way (46) suggests, imposing on A a truth-conditional content coinciding with A’s enabling conditions in the game, has been called piggybacking on the game, and I will borrow that terminology. 15

A picture may be helpful. We start out with A, the sentence uttered, or the proposition that A (let’s not be fussy about the distinction), represented as a region in logical space: the pink diagonal on the bottom left. A invites or suggests a game G. The generation function γ is represented by the blue arrow. A and γ together are supposed to induce a real content R, the letter flanked initially (in Figure 10.1) with question marks to indicate R is yet to be determined.

15Richard [2000]
How do they do it? R is supposed to be real-world hypothesis that makes A imaginable in the game—the minimal input to γ that gets us A in the output. That minimal input is something like the inverse image of A under γ. It is represented in Figure 10.2 as the yellow string of diamonds at the base of the blue game-arrow pointing to A.

This may be illustrated with another Walton example: “The Metropolitan Museum borrows a portrait of Napoleon from the Louvre for a special exhibit and has it shipped to New York on the Queen Mary...one might observe that Napoleon is a ‘passenger’ on the Queen Mary, thus invoking a possible game in which the presence of a portrait on a ship makes it fictional that the subject of the portrait is a passenger” (Walton [1993], 41).

The sentence uttered is $A = \text{Napoleon is a passenger on the Queen Mary}$. A’s compositional content, containing the worlds where Napoleon is indeed on board, is the diagonal at the lower left. The game is as Walton describes it. A portrait in the hold makes it pretendable that the portrayed individual is a passenger. The yellow region contains the R-worlds: the ones where it is legitimate to pretend that Napoleon is a passenger, because Napoleon is portrayed by some portrait on the ship. Each of the yellow diamonds corresponds to a different possible portrait, all equally legitimating the pretense that Napoleon is a passenger on the Queen Mary.\(^{16}\)

\(^{16}\)The blue diagonal and yellow diamonds overlap because $\text{Napoleon is a passenger}$ could be literally and figuratively true at the same time; he could be delivering the portrait to the Metropolitan Museum himself. The area of overlap is the region of twice-true metaphor.
10.4 PIVOTING ON A PRESUPPOSITION

Let’s turn now from piggybacking on a pretense to pivoting on a presupposition. The two have a certain amount in common. Both have us treating certain hypotheses as true, not because we believe them, but in pursuit of some expressive goal. (We may believe them; but that is not why we are at the moment treating them as true.) The goal is to draw a line through logical space, in order to characterize our world as lying on one side of that line and not the other.

The strategy adopted, in both cases, is to draw a different line from the one that’s intended, or maybe I should say, to gesture at or lightly sketch a different line. One takes this indirect route because drawing the line directly is for some reason not an option—one doesn’t know how to draw it directly, or it is dangerous to do so, or inconvenient, or drawing it directly is sub-optimal for some other reason. Indicating it indirectly is an option, however, for the intended line is recoverable from the one lightly sketched.

A further analogy is on the score of reusability. The real-world facts that make A pretendable in one game may not do so in another; its metaphorical content varies accordingly. There was an example on the radio, the morning I wrote this. The newscaster started by saying, in a metaphorical vein, that the senators on a certain committee were “all over the map” on the new immigration bill—meaning that they had a wide range of views on that bill. He then said that the senators in question were also literally all over the map, in that they came from different parts of the country, a fact which was supposed to explain their differing views on immigration.

But of course, the far-apart-spatially reading of all over the map is as metaphorical as the far-apart-doctrinally reading. (None of the senators lives on a map, any more than Michiganders live on their hands.) The one reading corresponds to a game in which your map position is a function of what you believe, the other to a game in which it is a function of the state you represent. A sentence’s possible metaphorical contents are all over the map, too, and the potential to shift between them is a boost to the language’s expressive power.\footnote{Productivity emphasizes the possibility of using ever more complex expressions to describe things around us. But what is important…..is that expressions, whether simple or complex, can be recycled, can be used over and over again by in different ways……by different people, to say different things. This is what we mean by the efficiency of language? (?, 32).}

A sentence’s real content can shift too, as we pivot on different presuppositions. Let A be My cousin is not a boy any more—uttered this time on a park bench as we watch my cousin fooling around on the monkey bars. Where before we assumed that my cousin is still male, it now becomes common ground that my cousin is still a child. How does the real content change when we pivot, not on my cousin’s gender, but my cousin’s age? A’s real content is the condition R that distinguishes worlds where my eight-year-old cousin is no longer a boy from those where he is a boy. What sets the
first off from the second is, I take it, that my cousin is now a girl in those worlds. That “he” is now a girl supplants his growing up as the sentence’s real content.

Or imagine the mother of the groom announcing, *I regret that the wedding is cancelled*. Quite likely we hear this as saying simply that it is cancelled. Obviously this is going to be a matter for regret. Suppose, though, that it is the cancellation that is obvious; we are the bride and groom and called it off ourselves. Now the claim is quite different. Events have taken a bad turn, as she sees it. She was NOT opposed, as we seem to imagine.

With so much in common, could it be that pivoting and piggybacking are the same phenomenon, or inessential variants of each other? It is a nice idea, which, it seems, can’t possibly work. What is the content that *A* acquires through pivoting on a presupposition? It corresponds to the feature of certain *P*-worlds whereby they verify *A* as opposed to *¬A*. This is what in the last chapter we called *A–P*. But, *A–P* as defined by (40) is implied by *A*. Pivoting as we’ve defined it can only *weaken* *A*. Piggybacking can generate any contents you like; it is just a matter of finding the right game. The great majority of figurative contents are *independent* of *A*, as *There’s a portrait of Napoleon on board* is independent of *Napoleon is on board*. None of these independent contents can be obtained by pivoting.

10.5 SUMMING UP

Readings are more or less unexpected according to the difficulty of working them up from a sentence’s standing meaning. The meaning might underdetermine the proper reading, or it might positively disallow it. I know of two main quasi-systematic ways in which radically unexpected readings may be generated: piggybacking on a pretense (*Walton [1993]*) , and pivoting on a presupposition (*Stalnaker [1999]*) . The second appears to involve logical subtraction. *A* is interpreted in light of background assumption *B*, and is heard to say that *A–B*. Problem: *A–B* has been defined only for a certain special case; the subtrahend *B* has got to be implied by the minuend *A*. *A–B* is always weaker than *A* in that case. Unexpected readings or contents may well be independent of *A*, as in some of the examples above.

18 An example from David Beaver. *Have you ever noticed that your belly button lint is the same color as your clothing?* (Beaver [2010]). Compare, *Have you ever known me to lie?*, said first by a friend asking to be trusted, then a CIA trainer interested in your powers of detection.
Chapter Eleven

The Missing Premise

11.1 ENTHYMEMES

Bear with me as I bring in an unrelated-seeming topic from introductory logic. Students are taught about valid arguments. Validity is a pretty demanding standard, they learn, rarely met outside of logic class. They are not to despair, however, for validity may be achieved by plugging in additional premises. Arguments in need of that kind of completion are called enthymemes, and plugging the premise in is called completing the enthymeme. The challenge may be formulated as follows:

\[B \]
\[\Box \]
\[R \]
\[\therefore A \]

The problem, in any particular case, is what to put in for \(R \), to make the argument valid. Or rather, what best to put in for \(R \), for there will be lots of options (\(B \to A \), for starters) and the argument may cry out to be completed in a particular sort of way. That some \(Rs \) are better than others is indeed sometimes written into the definition.

An enthymeme is a deductive argument with an unstated assumption that must be true for the premises to lead to the conclusion.

It’s that unstated assumption, sometimes called the missing, or implied, or suppressed, premise, that we are typically looking for. The tagline for Smucker’s jam is, “With a name like ‘Smuckers,’ it’s got to be good.” Smuckers jam has a funny name combines with some unstated \(R \) to imply that Smuckers is good jam. Any number of things could be put in, if the goal were just a valid argument.

Smuckers jam would not exist, were it not good.
Smuckers is good jam, if it is called ‘Smuckers.’
Smuckers is good jam, if it is jam at all.
All jam is good, and good for you.
Smuckers is good jam, its funny name notwithstanding.
CHAPTER 11

The proper assumption, I take it, is that funnily named jam has to be good (to compensate). A second example comes from Mark Twain: “There is no law against composing music when one has no ideas whatsoever. The music of Wagner, therefore, is perfectly legal.” Twain is expecting us to “solve for R.”

Music based on no ideas whatever is not illegal.

\[R \]

\[\therefore \text{Wagner’s music is not illegal.} \]

Again, if a solution is whatever makes the argument valid, there are lots of them:

- If music based on no ideas is legal, then Wagner’s music is legal.
- Wagner’s music is legal, profound, and based on no ideas whatever.
- Wagner’s music is based on bad ideas.
- Music is always legal.
- Music is always legal if it is composed by Wagner.

The intended solution, of course, Wagner’s music is based on no ideas whatever. Here, finally, is a suggestive passage from Bush’s 2003 “Mission Accomplished” speech.

The battle of Iraq is one victory in a war on terror that began on September the 11th, 2001, and still goes on...With those attacks, the terrorists...declared war on the United States. And war is what they got.

There may be various enthymemes here, but the one of interest is this:

- Our enemy in the war on terror is the 9/11 attackers.

\[R \]

\[\therefore \text{Defeating Iraq is a victory in the war on terror.} \]

Any number of validity-restoring Rs can be imagined.

- Defeating anyone is a victory in the war on terror.
- Victory over our 9/11 attackers is achieved by defeating Iraq.
- Iraq is our enemy in every war.
- We were not attacked on 9/11.
- The war on terror is a war against everyone.

Odd as some of the commentary was on Bush’s speech, none of these were suggested as “what he must have been thinking.” He was thinking that Iraq attacked us on 9/11.

An R that interpolates between B and A is evidently preferred to one that blocks the combination of B with $\neg A$ as such. Such a preference makes sense, given the notion’s dialectical roots.
In order to make a target group believe that A, the orator must first select a sentence B that is already accepted by the target group; secondly he has to show that A can be derived [with the help of plausible auxiliary premises] from B.

Imagine that we are trying to win acceptance of A from an interlocutor who admits only B. A is not implied by B, so there are B-worlds where A is false. Who is to say that our world is not among them? This is where R comes in. A ought to inherit whatever plausibility attaches to R, for A is implied by R and B, and B is common ground. More carefully, A inherits whatever independent plausibility attaches to R. R makes a case for A only insofar as it is plausible in its own right.

Our preferences can to some extent be explained on this basis. One isn’t going to persuade anyone of A by first getting them to agree that $\neg B$, if they have already signed on to B! One isn’t going to persuade anyone of A by getting them first to agree that A. What about $B \rightarrow A$? A conditional whose antecedent is accepted will be judged by its consequent, in this case, A. If $B \rightarrow A$ is only as plausible as A, we are not going to persuade anyone of A by getting them first to agree that $B \rightarrow A$. An R that interpolates between B and A is going to be more persuasive than one that contradicts B or derives any plausibility it may possess from A.

11.2 BAD CHOICES

Some candidate enthymeme-completers are worse than others. The question is how to pick out the bad ones. All we have so far is a label—R should “interpolate” between B and A—and a few shared judgments. We don’t know the factors driving these judgments. An example that wears its logical form on its face will help us to sort these out.

All and only firefighters are goalkeepers.

\[\therefore \text{No firefighters are horticulturalists.} \]

The following seem like bad things to put in for R:

(R$_1$) No firefighters are phrenologists.
(R$_2$) No firefighters are horticulturalists or phrenologists.
(R$_3$) All firefighters are goalkeepers and no firefighters are horticulturalists.
(R$_4$) If all firefighters are goalkeepers, no goalkeepers are horticulturalists.
(R$_5$) No firefighters are horticulturalists.

That is, abbreviating in the obvious way,

(R$_1$) $\forall x (Fx \rightarrow \neg Px)$

\[^{1}\text{"Aristotle's Rhetoric," the Stanford Encyclopedia of Philosophy.}\]
are bad things to put in for R in

$$B: \forall x (Fx \equiv Gx)$$

$$..............R...............
A: \forall x (Fx \rightarrow \neg Hx)$$

So, then, what is wrong with $R_1 - R_5$? One should not expect a single answer to this; there are lots of ways of not taking the shortest path from B to A. To anticipate, R_1 doesn’t even make it to A. R_2 upon reaching A keeps on going. R_3 goes over ground already covered. R_4 threatens to destroy ground already covered. R_5 begins at the finish line. The next section spells this out.

11.3 BRIDGING THE GAP

The least we expect of R is to deliver a valid argument. R_1 fails even at that. $\forall x (Fx \rightarrow \neg Px)$ does not combine with $\forall x (Fx \equiv Gx)$ to imply $\forall x (Fx \rightarrow \neg Hx)$. Our first requirement on R is

Sufficiency R suffices, with B, for A.²

R_2 has the opposite problem. $\forall x (Fx \rightarrow \neg (Hx \lor Px))$ does in some sense bridge the gap, but it is a bridge too far.³ R_2 goes too far by postulating, unnecessarily, that firefighters are not phrenologists. The next requirement is

Necessity R is necessary, given B, for A.⁴

Neither complaint applies to R_3. $\forall x (Fx \equiv Gx) \land \forall x (Gx \rightarrow \neg Hx)$ is necessary and sufficient, given B, for $\forall x (Fx \rightarrow \neg Hx)$. Where it goes wrong is in repeating material already present in B. It picks up before B leaves off, which makes it, if you like, a bridge too near.

How do we test for this? If R repeats something in B, it will have falsifiers (targetting the repeated element) that force B too to be false. B and R might be p and $p \land q$. That $p \land q$ covers old ground shows up in its having a falsemaker, p, that implies the falsity of p.⁵ Our third condition on R is

²That is, R implies $B \rightarrow A$.
³To vary the metaphor slightly.
⁴Meaning, B implies $\neg R \rightarrow \neg A$; or, $\neg R$ implies $B \rightarrow \neg A$.
⁵R here entails B, which is the paradigm case. But it is not the only case. R, to be repetitive, does not even need to entail part of B, or B part of R. For instance: $(p \land q) \lor r$ is repetitive with respect to p, since its falsemaker $p \land r$ forces p to be false; likewise $p \equiv q$, due to its falsemaker $p \equiv q$.

Originality No falsemaker for R should force B to be false.

Now $R_4 = \forall x (Fx \equiv Gx) \to \forall x (Fx \to \neg Hx)$, which amounts in the present case to $B \to A$. Does $B \to A$ have falsmakers forcing B too to be false? On the contrary, any falsemaker for $B \to A$ forces B to be true. $B \to A$ is not unoriginal, then. Nor is the problem one of sufficiency or necessity: $B \to A$ is equivalent to A in B-worlds.

The problem with $B \to A$ is that, although it leaves A no alternative but to be true in B-worlds, it plays no role in how A comes to be true in such worlds. Forgive me the following strained analogy. The cereal brand Wheaties used to bill itself as the Breakfast of Champions. Why, one might wonder, is it the Breakfast of Champions? Jerry Fodor distinguishes two possible answers.

1. Wheaties contains performance-boosting vitamins and minerals.
2. Wheaties is eaten by a non-negligible number of champions.

Our situation now is, R is billing itself as that which yields A when added to B. Why, one might wonder, is it the R-type B-worlds that are also A-worlds? Again there are two styles of answer.

1. They are the ones with such and such additional A-promoting features.
2. They are the ones which do not fail to be A-worlds.

To complete the enthymeme with $B \to A$ is like answering in the second way. $B \to A$ tells us that the only allowable B-worlds are A-worlds. But it doesn’t tell us what it is about certain B-worlds that makes them moreover A-worlds. The reason a Snow is cold-world w is moreover such that snow is cold and white is not that snow is cold and white in w, if it is cold there. Snow by hypothesis is cold in w, and we want to know why, given that it is cold, it is cold and white. Just so, the reason a world where The Fs = the Gs would be furthermore such that No Fs are Hs is not that No Fs are Hs, if the Fs = the Gs. The Fs by by hypothesis are the Gs in this world; the question is why, given this identity, it would then be the case that no Fs are Hs. (It’s got to do with none of the Gs being Hs.)

Now, R cannot capture what it is about certain B-worlds, that makes them moreover A-worlds, unless its reasons for being true obtain in B-worlds. A truthmaker holding only in $\neg B$-worlds is irrelevant to the distinction between B-worlds in which A is true and those where A is false.

Combinability No truthmaker for R should force B to be false.

The problem with $B \to A$ is that, since one way to verify a conditional is to falsify the antecedent, among its reasons for being true are some that force B to be false.

Our fifth bad candidate for the gap-bridging role is $R_5 (= \forall x (Fx \to \neg Hx))$, which says that no firefighters are horticulturalists. This is necessary and sufficient for the conclusion A, simply because it is that conclusion. Originality and combinability are satisfied, too. What is wrong with it, then? B
is utterly wasted. \(R_5 \) implies \(A \) all by itself. Our fifth requirement is that \(R \)
should leave \(B \) with as much responsibility as possible for the fact that the
two together imply \(A \).

Efficiency \(R \) should use as much of \(B \) as it can.

How do we tell if \(R \) is “using as much of \(B \) as it can”? This may be the
trickiest question, logically speaking, in the whole book. Let us proceed
carefully.

Any truthmaker for \(R \) will imply the truth of \(B \to A \), simply because \(B \)
and \(R \) imply \(A \). If it also implies \(B^- \to A \), for \(B^- \) a proper part of \(B \), it will
have wasted, so to speak, \(B \)'s surplus content relative to \(B^- \). A candidate
truthmaker is efficient insofar as it is not wasteful in the sense just noted.
Likewise any falsemaker for \(R \) will imply the truth of \(B \to \neg A \). Candidate
falsmakers become more efficient as they come to imply fewer and fewer
conditionals of the form \(B^- \to \neg A \) (\(B^- \) ranging again over \(B \)'s parts). \(R \)
uses as much of \(B \) as it can if the facts controlling its truth-value are efficient
in the sense just indicated.

To review. An enthymeme-completer should combine with \(B \) to imply \(A \),
and it should not be stronger than needed for that purpose. **Sufficiency**
speaks to the first issue, by requiring \(R \) to imply \(B \to A \). **Necessity**
speaks to the second, since if \(R \) was stronger than needed, there would be \(B \)-worlds
where it failed though \(A \) was true, hence \(B \) would not imply \(\neg R \to \neg A \). \(R \)'s
implication relations have not, strictly speaking, been specified any further
than this; we don’t what else it implies besides \(B \to A \), and what implies it,
besides \(B \& A \). Its implication relations depend, presumably, on \(R \)'s truth-
and falsity-makers, as set out in the three remaining conditions, but how?

The simplest course is to let \(R \) imply whatever the disjunction of its truth-makers
does, and be implied by whatever implies that disjunction; \(\neg R \) would
imply by the disjunction of \(R \)'s falsity-makers, and be implied by implores
of that disjunction. Shall \(R \) then be counted true and false in worlds where
both disjunctions obtain? That has a certain elegance, and it preserves
the principle that \(R \) is implied by \(R \)'s truthmakers, and \(\neg R \) by \(R \)'s falsity-
makers. Not to get bogged down in the technical complexities, we adopt

\(^6\)By **Sufficiency**, I assume, and treat it as implicit in **Sufficiency**, that \(R \)'s truthmakers accomplish this by making \(B \to A \) true.

\(^7\)By **Necessity**, \(R \)'s falsmakers are assumed moreover to make \(B \to \neg A \) true.

\(^8\)Suppose \(A \) and \(B \) are \(pqr \) and \(qrs \). An example of an inefficient truthmaker for \(pqr \to qrs \) is \(rs \) (the fact that \(r \) and \(s \)). That \(rs \) does not take full advantage of \(B \) can be seen from the fact that it also implies \(B^- \to A = pq \to qrs \). A better (more efficient) choice would be \(z \).

\(^9\)Here is the definition in full, with \(R \) ranging over truthmakers for \(R \).

1. \(R' \) uses more of \(B \) than \(R \) does iff \(\{ B^- \mid R', B^- \neq A \} \supset \{ B^- \mid R, B^- \neq A \} \)
2. \(R \) is \(B \)-wasteful in \(w \) iff some \(R' \) obtaining in \(w \) uses more of \(B \) than \(R \) does.
3. \(R \) is \(B \)-wasteful (period) iff it is \(B \)-wasteful in every \(B \)-world where it obtains.
4. \(R \) is \(B \)-efficient iff it is not \(B \)-wasteful.
the convention that R has neither truth-value in such worlds, even though it officially ought to have both. Our final condition is

Simplicity R is true (false) where it has a truthmaker (falsemaker).

where it is understood that opposing truth-value assignments, like particles and antiparticles, destroy each other when they collide.

11.4 INTERPOLATION = EXTRAPOLATION

So, to finally put it all in one place, these are the conditions R should meet to count as completing the enthymeme $B, ?R? \therefore A$:

Sufficiency R implies $B \rightarrow A$.

Necessity B implies $\neg R \rightarrow \neg A$.

Originality No falsemaker for R forces B to be false.

Combinability No truthmaker for R forces B to be false.

Efficiency R’s truthmakers are the B-efficient truthmakers for $B \rightarrow A$.

Simplicity R is true (false) where it has a truthmaker (falsemaker).

These conditions do not determine a unique gap-filling *sentence*, but that was never to be expected. Between two Rs expressing the same thought (ones that differ, say, only in the order of their conjuncts), there is not much to choose. The six conditions to pin down the thought a gap-filling sentence should express. That is all we asked of the conditions defining extrapolants and that is all we ask here.

Remainders were portrayed in Chapter 9 as the result of continuing A from the B-region into the rest of logical space. That sort of model makes sense if A implies B, for then the A-region is included in the B-region, as extrapolation would seem to require. Now the door has been opened, though, to Bs that A does not imply. What could extrapolation mean in that case? The idea of extending one region beyond the confines imposed by another is none too clear, if the one is not confined to begin with.

A new model is needed, now that A and B are allowed to be logically independent. Our discussion of enthymemes in the last section suggests one. The missing premise in $B, ?R? \therefore A$, can be sought after whether A implies B or not. Once an extrapolant, $A-B$ is in the general case to be conceived as an interpolant.

For this to work, the models had better agree in the “specific case,” where B is implied by A. There is so far no reason to expect this. The (six) conditions defining interpolants do not line up in any obvious way with the

10 Similarly for its falsity-makers.

11 A slight reordering yields the mnemonic SCONES.

12 Compare vector subtraction. $\vec{a} - \vec{b}$ don’t have to point in the same direction for there to be an \vec{r} which, added to \vec{b}, yields \vec{a}.
(four) conditions defining extrapolants. To count as extrapolating \(A \) beyond \(B \), \(R \) should be

- **Agreement** ...true (false) in the same \(B \)-worlds as \(A \).
- **Rectitude** ...true (false) at home for the same reasons as \(B\rightarrow A (\neg A) \).
- **Integrity** ...true (false) away for the same reasons as at home.
- **Determination** ...true (false) away if that is all it has reason to be.\(^{13}\)

Also the motivation was different. Extrapolation grows out of Wittgensteinian worries about going on in the same way. Interpolation harks back to Aristotelian rhetoric by way of introductory logic. Extrapolation is based on the the quasi-geometrical idea of extending a pattern into new territory. Interpolation draws us further into old territory, as we attempt to bridge the gap between two extant hypotheses.

This makes it all the more interesting that the two agree, given some minor fiddling, when \(A \) implies \(B \). Interpolation is what you get when extrapolation is extrapolated to the case where \(A \) does not imply \(B \). They agree across the board if the truthmakers in **Rectitude** are required to be \(B \)-efficient. (As they easily could have been; see note 2 in section 9.2). If there is anything like a “result” in this book, it’s that

48 Interpolation comes to the same as extrapolation.

Let me wave my hands at why this is so. Please skip ahead to the next section unless you are enthralled with such issues.

The combined effect of **Necessity** and **Sufficiency** is to make \(R \) equivalent, in the \(B \)-region, to \(A \). That is the same as \(A \) and \(R \) agreeing on \(B \)-worlds, as per **Agreement**.

The combined content of **Originality** and **Combinability** is that \(R \)'s truth- and falsity- makers do not force \(B \) to be false. This makes them (assuming \(B \) is bivalent) \(B \)-compatible. These truth- (falsity-) makers are characterized by **Efficiency** and **Integrity** as truthmakers for \(B\rightarrow A (B\rightarrow\neg A) \) that “use all of \(B \) that they can.” The four together require \(R \)'s truthmakers (falsemakers) to be \(B \)-friendly, \(B \)-efficient truthmakers for \(B\rightarrow A ((B\rightarrow\neg A) \). This is also the requirement laid down by **Rectitude** and **Integrity**.

What **Simplicity** officially says is that \(R \) is true where it has a truthmaker and false where it has a falsemaker. A convention was adopted for worlds where it has both: \(R \) shall be seen as neither true nor false in such worlds. \(R \) is true, then, according to our convention, where it has a truthmaker and no falsemaker, and false where it has a falsemaker but no truthmaker. These are the truth-value assignments we get from **Determination** as well.

11.5 SUMMING UP

Extrapolation is hard to make sense of if \(A \) does not imply \(B \). We try instead interpolating between \(B \) and \(A \): finding an \(R \) to complete the enthymeme,

\(^{13}\)The acronym: ARID.
$B, \vdash R, \therefore A$. This is the more general procedure since the initial premise in an enthymeme need not be weaker than the conclusion. It turns out to agree with extrapolation, however, when the initial premise is weaker. The two agree indeed across the board, if the homestyle truthmakers in *Rectitude* are understood be targeted (section 9.2, footnote 2).
Chapter Twelve

What is Said

12.1 RE-CONVERGENCE

I want to return now to the comparison begun in section 10.4 between piggybacking on a game and pivoting on a presupposition. The two have a lot in common, we said. For instance, A can take on different figurative contents as we vary the game, and different incremental contents as we vary the presupposition. Could it be that pivoting and piggybacking are one and the same phenomenon, or inessential variants of each other? This was rejected on the following grounds (repeated from above).

If the content A acquires through pivoting on B is $A\cdot B$, then pivoting can only weaken A’s literal content; for $A\cdot B$ as defined by (40) is always implied by A. Piggybacking thus looks like the more powerful operation; the contents it generates can be independent of A.

To illustrate with an example from above, *Napoleon is a passenger on the Queen Mary* ($= A$) can through piggybacking come to express that there is a portrait of Napoleon on board ($= R$). In the diagram, A’s compositional content, comprised of the worlds where Napoleon himself is on board, is the pink diagonal at the lower left. The yellow region contains the R-worlds—the ones where a Napoleon-portrait is traveling on the Queen Mary. Each of the yellow diamonds corresponds to a different possible portrait, all equally legitimating the pretense that Napoleon himself is a passenger. That the yellow region is not contained in the pink, or vice versa, testifies to A and R’s independence.

But, this only shows piggybacking to be more powerful than pivoting on an entailed presupposition. The question has to be revisited now that we have found an enthymematic construal of $A\cdot B$ that allows B to be independent of A. As the difference between independent vectors points in a third direction, independent of both, the difference between independent hypotheses is independent of both. Let me illustrate with $A = The\ king\ is\ the\ counting\ house$ and $B = The\ king\ is\ Nigel$, represented respectively by the pink diagonal and vertical blue bar in Figure 12.2.

To complete the enthymeme we need to find an R independent of both that agrees with A in the B-region, and “goes on in the same way” outside
it. That R in graphical terms should continue the pattern set by the purple diamond beyond the blue bar in a direction maximally independent both of it and the pink diagonal.

So then, at the risk of some repetition, the content A acquires through piggybacking on a game G is the condition that reality has to satisfy for
A to be “assertible” in G. If γ is the rule specifying what is assertible as a function of how the world is, then

49 A’s real content, piggybacking on a game G, is $\gamma^{-1}(A)$.

The content A acquires through pivoting on B is the premise that B needs to supplemented with, to obtain a valid argument for A. If β is the function mapping hypotheses X to their conjunction with B, then

50 A’s real content, pivoting on a presupposition B, is $\beta^{-1}(A)$.

The two approaches are starting, once again, to bear a certain resemblance. Both have us uttering A to convey a content R differs from A’s semantic content. Both frame the utterance against a certain backdrop: as a move in game G if we’re piggybacking, under the assumption that B if we’re pivoting. G and B are content-fixer, not ingredients in the content that gets fixed. Both employ a booster device—the game’s generation rules if we are piggybacking on G, the function taking X to $X \& B$ if we’re pivoting on B. Both characterize A’s real content as what must be fed into the booster device to obtain output A. The devices may be themselves analogous. Each B has associated with it a game whereby X makes it fictional that Y just if Y follows from $X \& B$.

Consider a Walton-style explanation of how a pretend assertion of *Holmes wrote a learned monograph on cigar ash* acquires the serious content that *According to the book, Holmes wrote a learned monograph on cigar ash*. The book is a prop in this game: players are to pretend that the book is factual, that what it says is true. What property must the book have to make it pretense-worthy that Holmes wrote a monograph, if we are pretending that the book is true? The book should say that he wrote a monograph on cigar ash. The real content thus becomes *According to the book, Holmes wrote a learned monograph on cigar ash*.

A pivoting-style explanation has not been tried, to my knowledge. How would it go? Readers of fiction are not wrestling with doubts about the document’s veracity. The phrase “suspension of disbelief” is misleading insofar as it suggests an effortful, deliberate undertaking. One simply takes the statements on board without subjecting them to any particular scrutiny; there is a presumption of accuracy. The real content of *Holmes wrote a learned monograph on cigar ash*, pivoting on this presumption, is the missing premise R in

\[R \]

What the book says is true.

\[\beta \]

Holmes wrote a learned monograph on cigar ash.

1This is a bit misleading because, as already discussed, $\beta: X \mapsto X \& B$ is a many-one function. One should think of β^{-1} as taking A to the “best” X such that $X \& B = A$; the best such X is $A-B$.
The premise that suggests itself is: The book says that Holmes wrote a learned monograph on cigar ash. This is the same result that Walton gets, but arrived at with unfanciful, off the shelf equipment.

Walton-inspired hermeneutic fictionalism has been tried in a huge lot of problem areas in recent years; truth, paradox, attitude ascriptions, properties, fictional characters, nonexistence, mathematics, and morality. These applications have often been found objectionable. But the objections turn, for the most part, on features of pretense that are not shared by presupposition. If piggybacking and pivoting are variations on a theme, one might hope to pick up with the second some of the load dropped by the first.

12.2 TROUBLES WITH PRETENSE

Philosophers get interested in unexpected content, in many cases, because among the statements they cannot bring themselves to believe are some that cannot easily be renounced, either. An explanation is needed of why falsehoods would be treated as true, and pretense appears to provide it. Speakers are not really asserting that A, they are making as if to assert it, in order to really assert a different thing which is more in keeping with the philosopher’s world-view. One makes as if to assert that that the rate of star formation is decreasing in order to really assert that fewer and fewer stars are coming into existence. Piggybacking is called in to explain how the one is a way of doing the other.

Piggybacking is one possible explanation of why we’d assert an untruth, or what might for all we knew was an untruth. But is it a plausible explanation, or an illuminating one? There have been doubts on this score. They can be grouped under three main headings: incredulity, opportunism, and honest toil.

Incredulity: The idea that speakers are making as if to believe in mathematical objects, can seem just fantastic. If they were pretending, wouldn’t they know it? They seem to know, if anything, the opposite.

Competent users of arithmetical discourse will certainly deny that they are pretending when they discuss arithmetic. (Stanley [2001], 46)

The denial seems credible. Pretending is not the sort of thing to be done behind our back. Also speakers may positively believe in numbers; why pretend what one takes to be genuinely the case?

Opportunism: The fictionalist might respond that pretense is a theoretical notion. It’s for the theorist to decide who is pretending; speakers have no authority in the matter. But, if speakers’ judgments are so easily overruled, then nothing appears to prevent the hermeneutic fictionalist from simply declaring, when faced with an ontologically loaded discourse,
that its users, when engaged in it, employ principles of generation that link the discourse up with ontologically innocent truth-conditions... (Stanley [2001], 43)

This links up with the first criticism. To use the method responsibly, we would need some objective check on when speakers are really pretending. And it is hard to think what test there could possibly be that ignores their self-reports.

Honest Toil: Semantics has an explanatory job to do. It is supposed to shed light on how finite beings are able to understand a potential infinity of sentences (section 10.1).

Linguists and philosophers have long held that the type of systematicity required to explain this ability requires attribution to language users of a compositional semantic theory (Stanley [2001], 4).

The fictionalist seems to have forgotten her responsibilities here. Her theory specifies A’s real content, relative to a game G, as $\gamma^{-1}(A)$, where γ is the associated generation function ((49) on page 159). γ is a semantic skyhook plopping A down on what is deemed the proper interpretation. Fictionalist “semantics” stipulates what linguists and philosophers have considered it their business to explain.

Not to say that I agree with all of these objections, let’s grant them for the sake of discussion. The question then becomes, are presupposition-based theories similarly problematic?

2This goes back, of course, to Russell’s remark about the method of postulation having all the advantages of theft over honest toil.

3A skyhook is defined by Dennett as “a “mind first” force or power or process, an exception to the principle that all design and apparent design, is ultimately the result of mindless, motiveless mechanicity.” (?)

4“[I]t is difficult to see how, on a pretense account of arithmetic, the real-world truth conditions of arithmetical sentences are a function of the meanings of the parts of the sentence. But we are able smoothly to grasp the truth-conditions of novel arithmetical sentences on the basis of our familiarity with their parts. This ability of ours is mysterious, if our understanding of such discourse involves the mechanism of pretense.” (Stanley [2001], 41).

5See the appendix to Yablo [2001]. The squabbling is partly terminological. Walton uses “pretend” in an extraordinarily wide sense, and hermeneutic fictionalists have followed him in this. “Shallow” pretense is “not the sort of pretense that draws us into imaginative play” (Crimmins [1998], 3). All it involves is that “to understand me, ...you have to distinguish what’s so from what’s [as if] so” (ibid.). I would add that what is as if so is not necessarily false; the speaker may even believe it to be true, as long as the belief is not why it is being treated as true. **Incredulity** from this perspective relies on an overheated conception of pretense. A self-knowledgeable speaker should, perhaps, know whether she is treating B as true, and whether she believes that B. But pretending is to do with the relations between these two; would she still, for instance, treat B as true if she stopped believing it? The idea that one must first investigate these matters, before treating B as true, is like insisting that to smile one must first decide whether it is out of politeness or friendly feeling.
Take first Incredulity. Asked if they are pretending arithmetic is true, people will deny it. But suppose we ask instead whether they are taking it for granted as they pursue other matters. Will they deny this, too? I doubt it.\(^6\) That seems, in fact, to capture the phenomenology pretty exactly. And the conversational role. A physicist might tell the class that spin takes integer and half-integer values. The students do not take themselves to have been told that integers exist. Nor would the professor expect to be described as testifying to this effect.

Another question the objector raises is, why would anyone pretend that \(P\), if she already believed it? One could equally ask why anyone would go to the trouble of exempting \(P\) from the pretense. Dostoevsky would not be much fun if we had to keep an eye out for actual truths, lest we extend to them an unneeded courtesy?\(^7\)

Anyway, there is not even the appearance of a clash when it comes to presupposing. What I presuppose in saying, *Neither of my children is a lion-tamer*, viz. that I have two children, I also believe. Nor does presupposing look like a deliberate act. You didn’t “decide” to accommodate the presupposition just mentioned, it just quietly slipped on board.

Opportunism was the worry that if speakers have no say in the matter, we can impute whatever pretense we like. But there is plenty to prevent us from simply declaring that speakers are presupposing what we like. Presupposition is a load-bearing notion in linguistics, and something that we know, within limits, how to test for.

One famous test, due I think to Frege, is that presuppositions are preserved under denial. To deny *The discoverer of the elliptical motions of the planets died in misery*, one says, *The discoverer did not die in misery*, not that followed by *...or else nobody discovered the elliptical motions of the planets.* Another test grows out of the fact that “new information” should not in most cases be presupposed. This is why it sounds better to say, *He came to think the tank was empty, and he was right*, than to say, *He came to think the tank was empty, and what is more, came to realize it was empty.*

A third test turns on the way surprising presuppositions are challenged. Told that *The oldest Finnish bullfighter was starring in a new movie*, you may respond, *Hey, I didn’t know Finland had bullfighters*, but not, *Hey, I didn’t know a bullfighter was going to be starring in a movie.* (Of course not, that is what I was telling you.) A fourth test is that presuppositions are not typically imported into the content of attitude ascriptions. Robespierre wanted the King of France to be called before the tribunal. For him to be called before the tribunal presupposes that France has a king. But Robe-

\(^6\)“Presupposes” is so much the natural term here that Putnam reaches for it even when his dialectical purposes are better served by “asserts”: “This type of argument stems, of course, from Quine, who has for years stressed both the indispensability of quantification over mathematical entities and the intellectual dishonesty of denying the existence of what one daily presupposes” (Putnam [1971], 347, italics added).

\(^7\)I thought first of Tolstoy, who sticks in lots of truths, but *War and Peace* is indeed not much fun.
spierre did not want France to have a king. (See von Fintel [2004] for the tests just mentioned.)

The tests are not perfect, but they’re something. Let’s try them out on the presuppositions we are contemplating here.

To deny The number of Martian moons is 2, one says The number of Martian moons is not 2, not The number of Martian moons is not 2, or else Mars doesn’t exist, or there is no such thing as the number of its moons.

Suppose I say, The King is coming this way, when we’re postulating, for fear of the secret police, that Nigel is the King. Hey, I didn’t know that Nigel was the King is a much better response than Hey, I didn’t know anyone was coming this way.

I know what is meant by Dogs exist, moreover the set of them is non-empty, but it sounds terrible. Dogs exist, and what is more, there exists such a thing as the set of dogs is fine, reflecting the fact that The set of them contains only dogs presupposes what There is such a thing as the set of dogs asserts.

Imagine a nominalist who tries to make her position true by destroying all the abstract objects. Initially the number of abstracta is infinite. She brings it down on Monday to $1,000,001$, on Tuesday to $100,001$, on Wednesday to $10,001$, on Thursday to $1,001$, ..., on Sunday to 1. Tuesday morning she wakes up with a terrible hangover. She may by now have destroyed the one remaining abstract object, but can’t be sure. She wonders whether the number of abstract objects has fallen finally to zero. She hopes that the number is zero. But she does not wonder whether there is such a thing as zero; it was destroyed last week. Still less does she hope that zero exists. Her desire is quite the opposite.

The Honest Toil objection accuses fictionalists of stipulating what real semanticists seek to explain. What I would like to ray is that the pivoting-induced real content, even if not compositional, is systematically enough related to compositional content to keep us honest. It is compositional content minus a bit: minus operative presuppositions. What determines the presuppositions, though? Some of them are generated compositionally by way of presupposition triggers (“too,” “managed,” “stopped”). But not all; there is nothing in the semantics of The King is in the counting house to suggest that by “the King,” we have in mind Nigel.

Pragmatic presuppositions are an unruly lot, and which we are actually pivoting on is a further question. I wish I could now pull out a road-tested diagnostic. So, for instance, as it might be, the parties to a speech exchange are pivoting on P if the audience can go on to say, after “Hey, I didn’t know that P,” things like

Oh, well forget I mentioned it.
OK, but let’s actually come back to that sometime.
Good, I’d rather not get pulled into that.

8See Abrusán [2012] for an aboutness-based explanation of why certain sorts of terms predictably, cross-linguistically, give rise to certain sorts of presuppositions.
and if the audience cannot say, without alarming the speaker, things like

Try again, pal, I happen to know that $\neg P$.
I agree, but not if P... or, not if $\neg P$.
You can’t possibly know that, you would first have to know that P.

As you can see, we are not quite there yet. Having tagged this as an open question, I will proceed on the assumption that it can be answered. Pivot presuppositions are not pulled out of thin air; they are genuine discourse features no less respectable than, say, focal stress, or domain restriction, or the question under discussion.

12.3 MOONLIGHTING

Pivoting offers certain advantages over piggybacking. If the metaphorical route to unexpected content were just a scenic alternative to the presuppositional route, taking us to the same place in more style, then we could perhaps just drop pretense and do it all with presupposition. How does *Planetary motion is described by a function of the form $ax^2 + by^2 = r^2$* acquire the content that planets move elliptically? It’s not because we *pretend* there are real-valued functions, on this view, it’s that we *assume* there are real-valued functions.

This might be right about the elliptical motion example. But is it true in general that the expressive work done by pretense can be taken over by presupposition?

Nelson Goodman considered metaphor a kind of linguistic moonlighting. One takes a word or phrase that was already gainfully employed, and finds additional work for it—work it can do while still holding onto its day job, indeed, work that often *depends* on its day job. What this means at the sentential level is that an A already endowed with truth-conditions is fitted out with new ones, informed by the original truth-conditions, but departing from them in some way. The question is whether metaphorical truth-conditions can depart further than incremental truth-conditions. Is it the case that for every game G, a presupposition B_G can be found such that the content A acquires through piggybacking on G is the content it acquires through pivoting on B_G?

It is not the case. Piggybacking is a strictly more powerful method. This may not come as a huge surprise to you. But the reasons are interesting; they tell us something about our theoretical options in particular cases. A’s metaphorical content can in principle be anything we want; it is just a matter of finding the right game. *Not* any old R can be A’s incremental content, however, even if we are allowed complete freedom in the choice of which presupposition B to pivot on. A and R have got to stand in certain relations for R to fit snugly into the gap between B and A.
This can be seen as follows. A truthmaker for \(R \) is at least a \(B \)-friendly truthmaker for \(B \rightarrow A \). \(B \)-friendliness means that it has got to obtain in at least one \(B \)-world. A \(B \)-world with a truthmaker for \(B \rightarrow A \) obtaining in it is clearly also an \(A \)-world. Each truthmaker for \(R \) thus holds in an at least one \(A \)-world, and similarly each falsemaker for \(R \) holds in at least one \(\neg A \)-world. This gives us a constraint on presuppositionally induced contents. \(A \) is open to \(R \), let’s say, just if \(R \)'s truthmakers are one and all compatible with \(A \), and its falsmakers are one and all compatible with \(\neg A \). The constraint is this:

51. \(R \) cannot be \(A \)'s incremental content unless \(A \) is open to \(R \).

Once again, figurative contents are not constrained in this way. Consider a simple game: we pretend that Judy is sailing around the world just when Judy is riding her bike around a puddle. Judy is riding around the puddle then becomes the metaphorical content of Judy is sailing around the world. Could it also be the incremental content of Judy is sailing around the world, relatively to some cleverly chosen \(B \)?

Some of \(R \)'s truthmakers are \(A \)-friendly; the nearest puddle could be on the deck of a world-circling schooner. But that is not the usual case. Judy cannot ride around a puddle in Boston Common while simultaneously circling the globe on a sailboat. Judy is sailing around the world is not open to Judy is riding around the puddle. It follows by (51) that Judy is riding around a puddle cannot be an incremental content of Judy is sailing around the world, relative to any presupposition.

Our conclusion so far is that metaphorical contents —contents obtainable by piggybacking on a game—cannot always be reconstructed as incremental contents—contents obtained by pivoting on a suitably related presupposition. Pivoting is a limited operation, compared to piggybacking.

But the argument for this had a limitation, too; it applies just when when \(A \) is closed to its metaphorical content. It could be, for all we have shown, that piggybacking on a game \(G \) can always be simulated by pivoting on a correspondingly related presupposition, provided that every \(A \) is open to its \(G \)-induced metaphorical content. I do not know that this is really so, but we can adopt it as a working hypothesis.

Now, wholes are certainly open to their parts. The part’s truthmakers are compatible with the whole’s, for they are non-trivially implied by the whole’s. The part’s falsmakers are compatible with the whole’s, too, for the same reason. Let us look, then, at games where the truth of a part licenses us in pretending the whole. Games of this type have players in a broad sense exaggerating—saying more than they mean—so let’s call them hyperbolic.

The contents generated by hyperbolic games do not fall afoul of (51) for the reason already mentioned; wholes are open to their parts. As far as the openness requirement is concerned, it could be that for each hyperbolic game \(G \), there is a presupposition \(B_G \) that “duplicates” it; piggybacking on the one yields the exact same real contents as pivoting on the other.
And now I make a conjecture: most, if not all, of the philosophically controversial games—the games invoked by fictionalists about numbers, sets, properties, mereological sums, other times and worlds, and so on—are hyperbolic. The facts that make \(A \) pretendable are included in the facts which would make it true. I shall illustrate, as will not surprise you, with number fictionalism.

One version of the number game has us pretending, for any bunch of \(Fs \), that there is such a thing as their number, subject to the condition (Hume’s Principle) that the number of \(Fs = \) the number of \(Gs \) iff there are exactly as many \(Fs \) as \(Gs \). Another version tells us to pretend that there is a number 0 such that, when there are no \(Fs \), the number of \(Fs = 0 \); that there is a number 1 such that when there is a unique \(F \), the number of \(Fs = 1 \); and so on. The game is hyperbolic in either version. Part of what it takes for the number of dogs to equal the number of cats is for there to be exactly as many dogs as cats. Part of what is involved in the literal truth of \(\text{the number of } Fs = 1 \) is that there is an \(F \) such that nothing else is an \(F \).

Where does this leave us? Hyperbolic fictionalism can, it seems, be re-played in the key of presupposition. And, the kinds of fictionalism one ordinarily thinks of are hyperbolic; they have us imagining a richer set of circumstances than perhaps obtains. I do not want to leave the impression that this works only for hyperbolic games; it works, we’re speculating, whenever \(A \) is open to \(R \). And for \(A \) to actually include \(R \) is just a very special case of that.\(^9\)

And I certainly don’t want to leave the impression that incremental contents must be included in, or even implied by, literal contents. Sense can be made of “what \(A \) adds to \(B \)” whether \(A \) implies \(B \) or not. Now we argue that “what \(A \) adds to \(B \)” is in in many cases a good candidate for the role of what is said or alleged in an assertive utterance of \(A \), where \(B \) is the operative presupposition.

12.4 UNEXPECTED INCREMENTAL CONTENT

Allow me to reset the scene from section (10.1). One utters a sentence \(S \) that is heard as saying that BLAH; BLAH is its “real content” on the occasion of utterance. Real contents may be more or less unexpected relative to \(S \)’s standing meaning. Four grades of unexpectedness were distinguished.

BLAH is unexpected\(_1\) if it is not determined by the sentence’s standing meaning. What the meaning gives us is an intelligible rule by which to determine real content as a function of context. BLAH is unexpected\(_2\) if, although real content may still be a function of context, the function is not

\(^9\)As one sees by comparing the definition of \(A \) includes \(B \)—each of \(R \)’s truthmakers (falsemakers) is implied by a truthmaker (falsemaker) for \(A \)—to that of \(A \) is open to \(B \) (rewritten to facilitate the comparison)— each of \(R \)’s truthmakers (falsemaker) is compatible with a truthmaker (falsemakers) for \(A \). The difference is that “implied by” in the first definition becomes “compatible with” in the second.
WHAT IS SAID

defined by a rule that speakers are expected to know. BLAH is unexpected if S’

’s meaning does not determine its real content as a function of context;
at most it puts BLAH on a list of possible readings. BLAH is unexpected if

the meaning of S disallows BLAH as a possible reading. Our proposed

model for this last kind of unexpected content is

52 S’s real content, pivoting on presupposition P, is S–P.10

Recall Soames’s example of campus security announcing to a large lecture

hall that they’re looking for Scott Soames. He says, I am Scott Soames, and

this seems a good reply despite the triviality of its compositional semantic

content. I am Scott Soames does not mean that I am the one you’re looking

for, and yet that is what we hear it to say.11 My cousin is not a boy any

more cannot have as its compositional semantic content My cousin is now

grown up; yet that is how it would ordinarily be understood. Likewise for

the other examples. Smith’s murderer is insane does not mean That guy

[pointing] is insane. She became a dot on the horizon does not mean She

came to look like a dot on the horizon. And so on.

Which of of the above-mentioned unexpected contents can be understood

as incremental, that is, as propositions that “bridge the gap” between S and

some salient presupposition P?12

Donnellan’s protagonists are assuming that that guy is Smith’s murderer.
The incremental content of Smith’s murderer is insane relative to this as-

sumption is the R that completes the following enthymeme:

That guy is Smith’s murderer

...........R...........

∴ Smith’s murderer is insane.

If we ask what goes in for R here, the answer seems clear: That guy is

insane. Which is what we hear S as saying, according to Donnellan, and

intuitively as well. So here is a case where incremental content does seem to

coincide with real or assertive content.

Soames’s example that is in some ways the opposite of Donnellan’s. Soames

uses I am Scott Soames to convey that he is the one they’re looking for. This
time the operative assumption, I take it, is that Scott Soames is the one that

they are looking for; after all, the last sentence uttered before Soames speaks

is We are looking for Scott Soames. The incremental content of I am Scott

Soames relative to this assumption, is the R that completes this enthymeme:

10I am not saying the model doesn’t apply to lesser forms of unexpectedness too. Recanati suggested the possibility of obtaining She mowed the grass (which is only unexpected from She cut the grass by pivoting on the widely held assumption that grass is cut by mowing it rather than slicing individual blades with a scalpel.

11Another possible reading is The present speaker is Scott Soames. This is unexpected, too, but less so than the reading in the main text. A type-shifting account might be tried here.

12Can be understood. We seek a “proof of concept” for the idea of obtaining unexpected contents from semantic contents by the device of pivoting on a presupposition. The device in its present form may overgenerate; still we see how the trick could be pulled.
Scott Soames is the one you’re looking for.
\[\vdots \vdots R \vdots \vdots\]
\[\therefore \text{I am Scott Soames.}\]

The missing premise would seem to be \textit{I am the one you’re looking for}—which, again, is what we hear \(S\) as saying.\(^{13}\)

What about \textit{My cousin is not a boy any more}? Its real content can shift, we noticed, as one pivots on different presuppositions. Normally, one is assuming the cousin is still male, and the real content is \textit{My cousin is grown up}. Is this what the theory predicts? Well, what is the \(R\) that completes

\[
\begin{align*}
\text{My cousin is still a male human being. (}\text{P}\text{)} \\
\vdots \vdots R \vdots \vdots \\
\therefore \text{My cousin is not a boy any more. (}\text{S}\text{)}
\end{align*}
\]

It’s \textit{My cousin is now grown up}. That is what has to be added to \textit{He is still male} to reach \textit{He is no longer a boy}. Now imagine we utter the same sentence (\textit{My cousin is not a boy any more}) while sitting on a park bench watching my visibly eight year old cousin fooling around on the monkey bars. Where before it was assumed that my cousin is still male, now it is assumed that my cousin is still a child. Now we’re looking for the \(R\) that completes

\[
\begin{align*}
\text{My cousin is still an eight year old human being. (}\text{P}\text{)} \\
\vdots \vdots R \vdots \vdots \\
\therefore \text{My cousin is not a boy any more. (}\text{S}\text{)}
\end{align*}
\]

What else do you need to know, to get from \textit{My cousin is an eight year old human being} to \textit{My cousin is not a boy anymore}? You need to know that the cousin is no longer male, hence presumably female.\(^{14}\)

Next, the Kripke/Austin example: \textit{She became a dot on the horizon}. I should probably let the example follow her over the horizon, because it is somewhat bewildering. But pivoting is not entirely helpless even with as weird a case as this. The background assumption is that things look the way they are. The real content obtained by pivoting on that assumption is the missing premise in

\[
\begin{align*}
\text{How she looks is how she is. (}\text{P}\text{)} \\
\vdots \vdots R \vdots \vdots \\
\therefore \text{She became a dot on the horizon. (}\text{S}\text{)}
\end{align*}
\]

\(^{13}\text{It might be objected (e.g. by Scott Soames) that }I \textit{am Scott Soames}\text{ is a trivially necessary truth which is implied by everything. This may be so in one sense of implication. But not a theoretically neutral sense.}\)

\(^{14}\text{I suggested early on that }S\text{’s unexpected content is not just what the }\textit{speaker says}, if }S\text{ carries it into larger grammatical contexts. }My \textit{cousin is not a boy any more}\text{ contributes different propositions depending on whether the cousin is understood still to be eight years old. David Hills makes this sort of point regarding metaphorical content in Hills [1998]. Stanley considers it }\textit{good evidence to take [the] paraphrase as part of what is expressed, rather than simply what is pragmatically communicated} (Stanley [2004]).\)
WHAT IS SAID

The missing premise, I suggest, is that she came to look like a dot on the horizon.\footnote{A thing looks to me like an F if I see it as an F. This does not require me to know how it would look if it really were F. One can see a horse as a unicorn, or a harbinger of doom. Thanks here to Sally Haslanger.} Compare the use of Holmes wrote a learned monograph about cigar ash, pivoting on the story’s supposed truth, to say that he wrote a monograph on that topic according to the story. Examples with a similar flavor: The moon is huge tonight, There are twenty-five students in our class picture.\footnote{Exercise: Explain in each case how the pivot point should change, to bring on the indicated shift in assertive content. The bank stopped bothering me says, pivoting on one assumption, that the bank stopped calling, pivoting on another, that I have come to enjoy the calls. You aren’t getting any younger expresses, pivoting on one assumption, that you are getting older, on another, that the rejuvenation machine is broken, They are shooting at us expresses, on one assumption, that they don’t recognize us, on another, that we should stop negotiating and start shooting at them.}

12.5 THE PLAIN AND THE PHILOSOPHICAL

Last year’s Hempel lectures were on the philosophy of philosophy, which got me to wondering what the implications of this material might be for philosophical theory-building. (Grandiose meta-philosophical speculation alert.)

A physical theory need not be true to be good, Field has argued, and I agree. All we ask of it truth-wise is that its physical implications should be true, or, in my version, that it should be true about the physical. What about philosophical theories? Should we be willing to settle for a philosophy that is only partly true?

Those of us raised in the David Lewis tradition of systematic theorizing, answerable to every datum in sight, will say NO. Lewis himself suggests a negative answer, when he objects to a theoretical outlook that defies common sense that

Unless we are doubleplusgood doublethinkers, it will not last.
And it should not last, for it is safe to say in such a case that we will believe a great deal that is false (Lewis [1983], xi).

A theory that defies common sense will contain some falsity, and that, it seems, is intolerable. That is from the Preface to the first volume of his philosophical papers. In the Preface to the second volume, however, he says that

What I uphold is not so much the truth of Humean supervenience as the tenability of it. If physics were to teach me that it is false, I wouldn’t grieve...What I want to fight are philosophical arguments against Humean supervenience (Lewis [1986], xi)

Now the goal seems to be a theory that, although perhaps false, is not false for philosophical reasons. “I am not ready to take lessons in ontology
from quantum physics as it is now,” he says (Lewis [1986], xi). Falsity for scientific reasons now apparently can be tolerated, until the physicists get their act together.

That is one goal, the goal of a philosophical system-builder: one seeks a theory that is false for scientific reasons, perhaps, but not philosophical reasons. But not all of us are theory-builders. Another kind of philosopher (the self-hating kind?) thinks we need sometimes to acquiesce in appearances, rather than trying always to penetrate them. The goal might even be to sweep philosophical theory aside and return to the plain truths we had in common before getting so curious. At that point we would face a choice: either give up philosophy, as Wittgenstein recommended, or depart from the plain truths only as necessary to clear up tempting confusions, as Wittgenstein actually did.

Either way, our first step should be to identify the facts that no one really disagrees about, though we may end up putting different philosophical construals on them. This turns out to be a difficult problem. It is the problem that led the positivists to despair of finding a neutral observational language in which to formulate protocol sentences (Carnap [1987], Neurath [1959]). Should the language speak of experience? Or of nearby middle-sized objects? Should it be an operationalist language that confines itself to our tests and tracking methods? Right from the start, there are theoretical choices to be made of a kind we were hoping to be done with. It seems the words do not exist any longer to state the facts in a way that arouses no philosophical suspicions..

One inevitably winds up saying more than one had meant to.

This ought to sound familiar, however. It is one more instance of the phenomenon we’ve been studying all along, in which truths come to us wrapped in larger falsehoods, or what may be falsehoods—claims anyway that court unnecessary controversy from our perspective, that go beyond what we really wanted to say. The strategy we have adopted is to go with the flow, letting it carry us past our destination with the idea of then backing up to the part of the doctrine that is not vulnerable to certain worries. Where Lewis sought a story that was not false for philosophical reasons, we in our Wittgensteinian moments are after the opposite: a story that is false, if it is, only for philosophical reasons. (Reasons of the kind raised by idealists, or bundle theorists, or nominalists, or mereological nihilists.) Our advocacy extends only to the part R of what we say that is not philosophically exposed.

\[^{17}\]I don’t know how Lewis would want to distinguish philosophical ways of being false from scientific ones. See Hawthorne and Michael [1996] for some interesting thoughts on threats to truth that only a philosopher could care about.

\[^{18}\]The distinction here—“plain” versus “philosophical”—comes from Clarke [1972]; I am not using the terms in quite his sense. See also Stroud [1984], Stroud [2000].
The framework we’ve been developing is pushed beyond its limits here. R is meant to be the part of S that is not about the philosophical. To model the philosophical would require a version of logical space with worlds in it answering to Plato’s picture of things, and Berkeley’s, and van Inwagen’s, and so on. It would also require a way of deciding when worlds are just alike in “ordinary” respects, even though only of one of them contains macro-objects, or enduring things, or what have you. But although the idea of plain truths may not be capturable with these methods, they do seem to bring it into some kind of relief. Maybe we need better methods. Or maybe, as Clarke maintained, the plain is not a self-contained matter; it contains the seeds of the philosophical.

\footnote{With a nod to Kant on reason setting problems for itself that reason cannot solve.}
Bibliography

BIBLIOGRAPHY

WHAT IS SAID

WHAT IS SAID

<table>
<thead>
<tr>
<th>WHAT IS SAID</th>
<th>185</th>
</tr>
</thead>
<tbody>
<tr>
<td>hyperintensionality, 49–51, 58–60, 97–101</td>
<td>negation, 32, 46, 54, 133</td>
</tr>
<tr>
<td>implicature, 54, 137</td>
<td>and sense, 54</td>
</tr>
<tr>
<td>impossibility, 74–76</td>
<td>and subject matter, 32</td>
</tr>
<tr>
<td>inextricability, 111–122</td>
<td>as cancellation, 133</td>
</tr>
<tr>
<td>intentional identity, 66</td>
<td>nonexistence claims, 70–73</td>
</tr>
<tr>
<td>interpolation</td>
<td>numbers, 13, 21–26, 73–74, 124–128, 166</td>
</tr>
<tr>
<td>Combinability, 151</td>
<td>observation, xv, 6, 17, 24, 69, 81, 131</td>
</tr>
<tr>
<td>Efficiency, 152</td>
<td>ontology, 39, 132, 135</td>
</tr>
<tr>
<td>Necessity, 150</td>
<td>other minds, 113</td>
</tr>
<tr>
<td>Originality, 151</td>
<td>parts, 111, 112, 121, 141</td>
</tr>
<tr>
<td>Sufficiency, 150</td>
<td>possibility, 11, 74</td>
</tr>
<tr>
<td>Jaeger, Ronald, 115</td>
<td>presupposition, 113–124, 140–168</td>
</tr>
<tr>
<td>James, William, 63, 64</td>
<td>failure, non-catastrophic, 122–124</td>
</tr>
<tr>
<td>King of France, 123–124, 162</td>
<td>pivoting on, 145–169</td>
</tr>
<tr>
<td>Klein, Melanie, 5</td>
<td>quantification, 49–52</td>
</tr>
<tr>
<td>knowledge, 8, 12, 92–106</td>
<td>binary, 50</td>
</tr>
<tr>
<td>and conditionals, 99</td>
<td>restricted, 53</td>
</tr>
<tr>
<td>and desire, 100</td>
<td>questions, 26</td>
</tr>
<tr>
<td>and perception, 101</td>
<td>Quine, W.V.O., 11, 13, 63</td>
</tr>
<tr>
<td>and permission, 101</td>
<td>ravens paradox, 13–15, 52, 77–87</td>
</tr>
<tr>
<td>and skepticism, 105</td>
<td>Rayo, Agustín, viii, 75</td>
</tr>
<tr>
<td>closure, 9, 92</td>
<td>Recovery, 124</td>
</tr>
<tr>
<td>hyperintensionality of, 97, 101</td>
<td>remainders, 110–115, 118–131</td>
</tr>
<tr>
<td>inferential, 94, 103</td>
<td>Return, 124</td>
</tr>
<tr>
<td>lightweight, heavyweight, 91, 93</td>
<td>Richard, Mark, 143</td>
</tr>
<tr>
<td>Kripke, Saul, 11, 71, 91, 113, 139</td>
<td>Rosen, Gideon, 66</td>
</tr>
<tr>
<td>Langendoen, Terence, 141</td>
<td>Russell, Bertrand, 3, 107</td>
</tr>
<tr>
<td>laws of nature, 69–70</td>
<td>Ryle, Gilbert, 17</td>
</tr>
<tr>
<td>Lewis, David, 6, 15, 28, 169</td>
<td>SCONES, 153</td>
</tr>
<tr>
<td>logical priority, 8</td>
<td>semantic excuses, 3–5</td>
</tr>
<tr>
<td>make-believe game, 140, 142–166</td>
<td>Shrek, 6</td>
</tr>
<tr>
<td>generation rules, 159, 161</td>
<td>skepticism, xv, 5, 98, 103–105</td>
</tr>
<tr>
<td>piggybacking on, 142–166</td>
<td>Soames, Scott, 7</td>
</tr>
<tr>
<td>props, 142</td>
<td>Sober, Elliott, 12</td>
</tr>
<tr>
<td>mathematics, 40, 65, 73, 74, 160</td>
<td>Socrates, 5</td>
</tr>
<tr>
<td>metaontology, 132</td>
<td>Stalnaker, Robert, viii, 52, 67, 100, 141</td>
</tr>
<tr>
<td>might, 134–135</td>
<td>Stanley, Jason, viii, 160–161</td>
</tr>
<tr>
<td>Moore, G.E., 96, 107</td>
<td>Strawson, P.F., 123, 133, 134</td>
</tr>
<tr>
<td>must, 7</td>
<td>subject matter, xiii, 10–33</td>
</tr>
<tr>
<td>mysterianism, 121–130</td>
<td></td>
</tr>
</tbody>
</table>
INDEX

and questions, 26
inclusion, 22
lewissian, xvi, 33, 38
non-exclusive, 26
subtraction, xv, 107–135
 as extrapolation, 117–122, 153–154
 as interpolation, 153–154
 quasi truth-tables for, 124–125
suppositional “if”, 52–53

thoughts, 15, 38, 104, 109, 120
truth, xv, 3–10, 38, 63–74
 likeness to, 87–89
 partial, 3–10, 63–74, 169
 semantic conception of, 43
truth-conditional pragmatics, 138
truthmakers, 35–61, 109–115, 121–153,
 165–166
horizontal, 58
minimal, 47–49
proportional, 59–60
recursive, 44–47
semantic conception of, 43–60
targeted, 119–122
vertical, 44
wasteful, efficient, 152

Ullian, Joseph, 4

van Fraassen, Bas, 12
verisimilitude, 87–89
von Fintel, Kai, viii, 108, 163

Walton, Ken, 140, 142–144
Wittgenstein, Ludwig, 3, 109, 113,
 115, 127, 170
worlds, xi, 6, 15–38, 50–76
 impossible, xi, 74–76

Yalcin, Seth, 13, 135
Nomenclature

\(A, B, \ldots \) sentences
\(p, q, \ldots \) atomic sentences
\(w \) a possible world
\(\equiv \) an equivalence relation
\([x]_\equiv \) \(x \)'s cell in the partition: the set of \(y \) equivalent to \(x \)
\(\approx \) a similarity relation
\([x]_\approx \) \(x \)'s cell in the corresponding division: the set of \(y \) similar to \(x \)
\(m \) a subject matter considered as an entity in its own right
\(m(w) \) how matters stand in \(w \) where \(m \) is concerned
\(m \geq n \) subject matter \(m \) includes subject matter \(n \)
\(A^\uparrow \) a truthmaker for \(A \)
\(A^\downarrow \) a falsemaker for \(A \)
\(\{p\} \) the fact that \(p \)
\(\{\neg p\} \) the fact that \(\neg p \)
\(a \) the subject matter of sentence \(A \)
\(\overline{a} \) the subject anti-matter of sentence \(A \)
\(\hat{a} \) \(A \)'s overall subject matter, \(a + \overline{a} \)
\(<A> \) another term for \(A \)'s overall subject matter
\(A \geq B \) \(A \) includes \(B \), \(B \) is part of \(A \)
\(X \) a set of worlds
\(X/m \) the “quotient set” when \(X \) is divided by \(m \)
\(A_m \) the part of \(A \) about \(m \), what \(A \) says about \(m \)
\(A \) \(A \)'s truth-conditional content
<table>
<thead>
<tr>
<th>A</th>
<th>A’s truth-conditional content again</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>the directed proposition that A, A + a</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>B ⊲ A</td>
<td>A, supposing that B</td>
</tr>
<tr>
<td>A−B</td>
<td>what A adds to B, the remainder when B is subtracted from A</td>
</tr>
<tr>
<td>A⊧B</td>
<td>the fact that A makes it true that B</td>
</tr>
<tr>
<td>A&ℏB</td>
<td>a sentence agreeing with A in B-worlds, otherwise undefined</td>
</tr>
</tbody>
</table>